Dựng đoạn thẳng \(\sqrt{1+\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1: Dựng hình vuông có số đo mỗi cạnh là 2. Ta có bình phương độ dài đường chéo của hình vuông đó là : 2^2 + 2^2 = 8
=> Đường chéo đó dài căn 8
Cách 2 Vẽ tam giác vuông cân có cạnh bên là 2 cm => cạnh huyền là căn 8
1) Áp dụng HTL:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{4^2}+\dfrac{1}{\left(4\sqrt{2}\right)^2}=\dfrac{3}{32}\Rightarrow AH=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)
Áp dụng đ/lý Pytago:
\(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{4^2+\left(4\sqrt{2}\right)^2}=4\sqrt{3}\left(cm\right)\)
Bài 2:
a) \(pt\Leftrightarrow\sqrt{\left(2x+1\right)^2}=3\Leftrightarrow\left|2x+1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3\\2x+1=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
b) \(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=2\sqrt{x}.\dfrac{\sqrt{x}+1}{\sqrt{x}}=2\sqrt{x}+2\)
1. ĐKXĐ: \(-1\le x\le1\)
\(A^2=1-x+1+x+2\sqrt{\left(1-x\right)\left(1+x\right)}=2+2\sqrt{\left(1-x\right)\left(1+x\right)}\ge2\)
\(\Rightarrow A\ge\sqrt{2}\). Vậy min A = \(\sqrt{2}\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)(thỏa mãn)
Mặt khác \(A^2=2+2\sqrt{\left(1-x\right)\left(1+x\right)}\le2+1-x+1+x=4\)
\(\Rightarrow A\le2\). Vậy max A = 2\(\Leftrightarrow x=0\)(thỏa mãn)
Cách dựng. Giả sử đoạn thẳng đã cho là ABAB
Khi đó, AEAE là đoạn thẳng có độ dài √aa cần dựng
Chứng minh. Vì E∈(ω)E∈(ω) nên △EBC△EBC vuông ở EE, mà EA⊥BC(A∈BC)EA⊥BC(A∈BC) nên AE=√AC.AB=√aAE=AC.AB=a, thỏa mãn
bn vào đây thử: Dựng đoạn thẳng dựa vào đoạn thẳng cho trước - Hình học - Diễn đàn Toán học
bó tay!! 3645764576657567568587876869789685745745787676957856