giup e vs ạ huhu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOy}< \widehat{xOz}\left(60^0< 120^0\right)\)
nên tia Oy nằm giữa hai tia Ox và Oz
Suy ra: \(\widehat{xOy}+\widehat{yOz}=\widehat{xOz}\)
hay \(\widehat{yOz}=60^0\)
b) Ta có: tia Oy nằm giữa hai tia Ox và Oz(cmt)
mà \(\widehat{xOy}=\widehat{yOz}\left(=60^0\right)\)
nên Oy là tia phân giác của \(\widehat{xOz}\)
c/tiếp tục áp dụng công thức bậc 2 :
(a=12;b=-25;c=12) có:
\(x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2.a}\)
\(\Leftrightarrow x=\dfrac{-1.-25\pm\sqrt{-25^2-4.12.12}}{2.12}\)
\(\Leftrightarrow x=\dfrac{25\pm\sqrt{49}}{24}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{25+7}{24}\\x_2=\dfrac{25-7}{24}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{4}{3}\\x_2=\dfrac{3}{4}\end{matrix}\right.\)
từ trên suy ra:
\(\dfrac{3}{4}\le x\le\dfrac{4}{3}\)
b/áp dụng công thức bậc 2 :
\(x=\dfrac{-1.-3\pm\sqrt{3^2-4.2.-2}}{2.2}\)
\(\Leftrightarrow x=\dfrac{3\pm\sqrt{25}}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{3-5}{4}\\x_2=\dfrac{3+5}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=2\end{matrix}\right.\)
Trên pc cj vẽ khó qué e tự nghiên cứu hỏi lại thầy cô nhe:<
\(\Rightarrow x\le-\dfrac{1}{2};x\ge2\)
\(\Rightarrow x\in\left\{-\infty;-\dfrac{1}{2}\right\}U\left\{\infty;2\right\}\)
b: Vì (d)//y=-2x+5/2 nên a=-2
Vậy: y=-2x+b
Phương trình hoành độ giao điểm là:
\(0.5x^2+2x-b=0\)
\(\Delta=2^2-4\cdot0.5\cdot\left(-b\right)=4+2b\)
Để (d) tiếp xúc với (P) thì 2b+4=0
hay b=-2
Gọi số kg vật liệu xưởng phải sản xuất mỗi ngày theo kế hoạch là \(x\left(kg\right)\left(0< x< 216\right)\)
Thời gian dự định sản xuất là \(\dfrac{216}{x}\) (ngày)
Ba ngày đầu tiên khối lượng vật liệu sản xuất được là \(3x\left(kg\right)\)
Số vật liệu còn lại là \(232-3x\)
Thời gian sản xuất số vật liệu còn lại là \(\dfrac{232-3x}{x+8}\)
Ta có phương trình:
\(\dfrac{216}{x}=3+\dfrac{232-3x}{x+8}+1\)
\(\Rightarrow216\left(x+8\right)=4x\left(x+8\right)+\left(232-3x\right)x\)
\(\Rightarrow216x+1728=4x^2+32x+232x-3x^2\)
\(\Rightarrow x^2+48x-1728=0\Rightarrow\left[{}\begin{matrix}x=24\left(TM\right)\\x=-72\left(L\right)\end{matrix}\right.\)
Vậy theo kế hoạch mỗi ngày xưởng phải sản xuất 24 kg vật liệu.
`#Hưng`
\(a,3\sqrt{8\sqrt{5}}-2\sqrt{9\sqrt{20}}\\ =\sqrt{9.8\sqrt{5}}-\sqrt{4.9\sqrt{20}}\\ =\sqrt{72\sqrt{5}}-\sqrt{36\sqrt{20}}\\ =\sqrt{\sqrt{5184.5}}-\sqrt{\sqrt{1296.20}}\\ =\sqrt{\sqrt{25920}}-\sqrt{\sqrt{25920}}\\ =0\)
\(b,ĐKXĐ:x\sqrt{x}-\sqrt{x}+x-1\ne0\\ \Rightarrow\sqrt{x}\left(x-1\right)+\left(x-1\right)\ne0\\ \Rightarrow\left(x-1\right)\left(\sqrt{x}+1\right)\ne0\\ \Rightarrow x-1\ne0\left(vì.\sqrt{x}+1>0\right)\\ \Rightarrow x\ne1\)
a: Xét ΔABC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{15}=\dfrac{CD}{10}\)
=>\(\dfrac{AD}{3}=\dfrac{CD}{2}\)
mà AD+CD=AC=15cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{2}=\dfrac{AD+CD}{3+2}=\dfrac{15}{5}=3\)
=>\(AD=3\cdot3=9cm;CD=2\cdot3=6\left(cm\right)\)
b: Xét ΔABC có BD' là phân giác góc ngoài
nên \(\dfrac{D'C}{D'A}=\dfrac{BC}{BA}\)
=>\(\dfrac{D'C}{D'C+CA}=\dfrac{10}{15}=\dfrac{2}{3}\)
=>\(\dfrac{D'C}{D'C+15}=\dfrac{2}{3}\)
=>\(3D'C=2\left(D'C+15\right)\)
=>D'C=30(cm)