Tìm số tự nhiên x, biết rằng ba số 12;20 và x, có tích bất kì của hai số nào cũng chia hết cho số còn lại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ba đường cao của một tam giác có độ dài lần lượt là 4; 12;x . Biết rằng x là một số tự nhiên . Tìm x
Gọi độ dài ba cạnh (ba đáy của các đường cao tương ứng) lần lượt là a,b,c
Cùng 1 tam giác, đường cao và đáy là các đại lượng tỉ lệ nghịch nên :
\(\frac{4a}{2}=\frac{12b}{2}=\frac{xc}{2}=S\)(S là diện tích tam giác ABC)
\(\Rightarrow2a=6b=\frac{x}{2}.c=S\)
\(\Rightarrow\hept{\begin{cases}a=\frac{S}{2}\\b=\frac{S}{6}\\c=\frac{2S}{x}\end{cases}}\)
Theo bất đẳng thức tam giác ,ta có:
\(a-b< c< a+b\)
\(\Rightarrow\frac{S}{2}-\frac{S}{6}< \frac{2S}{x}< \frac{S}{2}+\frac{S}{6}\)
\(\Rightarrow\frac{S}{3}< \frac{2S}{x}< \frac{2S}{3}\)
\(\Rightarrow\frac{2S}{6}< \frac{2S}{x}< \frac{2S}{3}\)
\(\Rightarrow3< x< 6\)
Mà x là số tự nhiên nên x = 4 hoặc x = 5
a) x chia 8;12;16 dư 2
=>x-2 chia hết cho 8;12;16
mà 8=2^3
12=2^2x3
16=2^4
=> BCNN(8;12;16)=2^4x3=48
=>x-2 thuộc B(48)=[48;96;144;....]
x=[50;98;146;....]
mà x nhỏ nhất có 2 chữ số =>a=50
b) ta có a chia 12 dư 11
a chia 15 dư 14
=> a+1 chia hết cho 12 và 15
=> a+1 thuộc BC(12;15)
mà 12=2^2x3
15=3x5
=>BCNN(12;15)=2^2X3X5=60
=> a+1 thuộc B(60)=[60;120;180;.....]
a=[59;119;179;....]
mà a nhỏ nhất =>a=59
c) x chia 50;38;25 dư 12
=> x-12 chia hết cho 50;38;25
mà 50=2x5^2
38=2x19
25=5^2
=>BCNN(50;38;25)=2x5^2x19=950
=>a-12 thuộc B(950)=[950;1900;2850;....]
a=[962;1912;2862;....]
mà a bé nhất =>a=962
nhớ tick cho mình đấy
b) Theo đề bài, A : 12,15 (dư lần lượt là 11 và 14)
Vậy (A+1) chia hết cho 12,15
BCNN của 12,15 là:
\(\hept{\begin{cases}12=2^2\times3\\15=3\times5\end{cases}}\Rightarrow BCNN=2^2\times3\times5=60\)
Vậy a=60-1=59
Học tốt nha ^-^
Gọi số tự nhiên cần tìm là x ( x ∈ N )
Theo đề, ta có: ( x + 12 ) : 5 = 150
x + 12 = 750
x = 738
Vậy số cần tìm là 738
Đơn giản là vì theo quy tắc là chúng ta sẽ biểu diễn theo thứ tự đề bài từ trước ra sau