Cho \(x^2+y^2+z^2=3\). Tìm \(max\)và \(min\)của \(A=x+y+z+27\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn bài của chú là chứng cả mắt, và chú cũng vậy? Thế giới của chú thật nghèo nàn.
Ta có:
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow\) \(2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\ge0\)
\(\Leftrightarrow\) \(x^2+y^2+z^2\ge xy+yz+xz\) (với mọi \(x,y,z\in R\) )
Do đó, \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\le x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)\)
Hay nói cách khác, \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)
\(\Rightarrow\) \(-3\le x+y+z\le3\)
Khi đó, \(A\le3+27=30\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z\\x^2+y^2+z^2=3\end{cases}\Leftrightarrow}\) \(x=y=z=1\)
Vậy, \(A_{max}=30\) khi \(x=y=z=1\)
Áp dugnj bđt bunhia ta được \(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=9\)(vì x+y+z=3)
\(\Rightarrow M\ge\frac{9}{3}=3\)
Dấu = xảy ra khi x=y=z và x+y+z=3 =>x=y=z=1
b,
\(P=\frac{x}{\left(x+10\right)^2}\le\frac{x}{40x}=\frac{1}{40}\)
dấu = xảy ra khi x=10