K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

Ta có :

\(A=\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+......................+\dfrac{1}{n^3}\)

\(2A=\dfrac{2}{2^3}+\dfrac{2}{3^3}+\dfrac{2}{4^3}+.....................+\dfrac{2}{n^3}\)

Vì :

\(\dfrac{2}{2^3}< \dfrac{2}{1.2.3}\)

\(\dfrac{2}{3^3}< \dfrac{1}{2.3.4}\)

.................................

\(\dfrac{2}{n^3}< \dfrac{2}{\left(n-1\right)n\left(n+1\right)}\)

\(\Rightarrow2A< \dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...................+\dfrac{2}{\left(n-1\right)n\left(n+1\right)}\)

\(2A< \dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+..............+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)

\(2A< \dfrac{1}{1.2}-\dfrac{1}{n\left(n+1\right)}\)

\(\Rightarrow A< \left(\dfrac{1}{1.2}-\dfrac{1}{n\left(n+1\right)}\right):2\)

\(A< \dfrac{1}{4}-\dfrac{1}{2n\left(n+1\right)}\)

\(\Rightarrow A< \dfrac{1}{4}\) \(\rightarrowđpcm\)

~ Chúc bn học tốt ~

22 tháng 6 2017

a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100                                                                                                                                                  => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101                                                                                                                                                   => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101                                                                                                                 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101                                                                                                                                       Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B                                                                                                                                                   => 2B = 1 + 1/2 + 1/22 +..+ 1/299                                                                                                                                                                   => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100                                                                                            => 1/2A = 1 - 1/2100 - 100/2101                                                                                                                                                                 Có 1/2A < 1 => A < 2 =>ĐPCM                                                                                                                          b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101                                                                                                                                                => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101                              Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D                                                                                                                                               => 3D = 1 + 1/3 +..+ 1/399                                                                                                                                                                         => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100                                                                                                       => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101                                                                                                                                                 Có 4/3C < 1 => C<3/4 => ĐPCM              Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)          

12 tháng 8 2019

những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé

9 tháng 4 2017

\(S=\frac{1}{\frac{2}{2}}+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{n\left(n+1\right)}{2}}\)

\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{n\left(n+1\right)}\)

\(S=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(S=2.\left(1-\frac{1}{n+1}\right)< 2.1=2\)

Vậy S<2