tìm GTNN
A = X2 + 10x + 30 + y + 2y
B= Z2 _ 6Z _ 8 + T2 + 4T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$
$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$
$\Leftrightarrow x=3; y=-2$
---------------------
$B=9x^2+y^2+2z^2-18x+4z-6y+30$
$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$
$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$
$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$
$\Leftrightarrow x=1; y=3; z=-1$
$C=x^2+y^2+z^2-xy-yz-xz+3$
$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$
$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$
$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$
$\Rightarrow C\geq 3$
Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$
$\Leftrihgtarrow x=y=z$
--------------------------------------
$D=5x^2+2y^2+4xy-2x+4y+2021$
$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$
$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$
$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$
$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$
Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$
$\Leftrightarrow x=1; y=-2$
\(D=x^4+4xy+4y^2-z^2+2xt-t^2\)
\(=\left[x^2+2.x.2y+\left(2y\right)^2\right]-\left(z^2-2.z.t+t^2\right)\)
\(=\left(x+2y\right)^2-\left(z-t\right)^2\)
\(=\left(x+2y-z+t\right)\left(x+2y+z-t\right)\)
Với \(x=10;y=40;z=30;t=20\):
\(D=\left(10+2.40-30+20\right)\left(10+2.40+30-20\right)\)
\(=\left(10+80-10\right)\left(10+80+10\right)\)
\(=80.100=8000\)
Vậy \(D=8000\)
Đáp án A
Phương pháp
Giả sử mặt phẳng (b) cắt mặt cầu (S ) theo đường tròn có bán kính r
Mặt cầu (S) có tâm I, bán kính R và d(I; β ) = R ta có R 2 = r 2 + d 2
Cách giải
Mặt phẳng (b) cắt mặt cầu (S) theo đường tròn có bán kính r = 8 π 2 π = 4
Mặt cầu (S) có tâm I(-1;2;3) bán kính R = 17 - m
Ta có
Áp dụng định lí Pytago ta có
⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0
x^2+4y^2+z^2-2x-6z+8y+15
=x^2+4y^2+z^2-2x-6z+8y+1+1+4+9
=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1
=(x-1)^2+4(y+1)^2+(z-3^)2+1
Ta thấy:(x−1)^2≥0
4(y+1)^2≥0
(z−3)^ 2≥0
{(x−1)^24(y+1)^2(z−3)^2≥0
⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0
⇒(x−1)2+4(y+1)2+(z−3)2+1≥0+1=1>0