a, \(\sqrt{9\cdot\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)
b,\(\sqrt{9\left(3-a\right)^2}vớia>3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9\)
b: \(=\sqrt{81-17}=8\)
Không hiểu sao cứ gửi ảnh nó lại bị lộn xộn nên bạn cố nhìn nhé
( ͡°( ͡° ͜ʖ( ͡° ͜ʖ ͡°)ʖ ͡°) ͡°)
Bài 1:
a: \(=\sqrt{32.4}=\dfrac{9}{5}\sqrt{10}\)
b: \(=\sqrt{5\cdot5\cdot7\cdot7\cdot11\cdot11}=5\cdot7\cdot11=385\)
c: \(=5-2\sqrt{6}\)
d: \(=18-1=17\)
e: \(=3\sqrt{2}-2\sqrt{3}+7\sqrt{3}-7\sqrt{2}=-4\sqrt{2}+5\sqrt{3}\)
\(\left(2+\sqrt{3}\right)\left(\sqrt{7-4\sqrt{3}}\right)=\left(2+\sqrt{3}\right)\sqrt{4-4\sqrt{3}+3}\)
\(=\left(2+\sqrt{3}\right).\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left(2+\sqrt{3}\right)\left|2-\sqrt{3}\right|\)
\(=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)( Vì \(2-\sqrt{3}>0\))
\(=4-2=1\)
mk
\(a,\sqrt{\frac{5.\left(38^2-17^2\right)}{8.\left(47^2-19^2\right)}}\)
\(=\sqrt{\frac{5.\left(38-17\right)\left(38+17\right)}{8.\left(47-19\right)\left(47+19\right)}}\)
\(=\sqrt{\frac{5.21.55}{8.28.66}}\)
\(=\sqrt{\frac{5775}{14784}}=\frac{5\sqrt{231}}{2\sqrt{4370}}\)
a)\(\sqrt{3\sqrt{2}-2\sqrt{3}}.\sqrt{3\sqrt{2}+2\sqrt{3}}\)
= \(\sqrt{18-12}\)
= \(\sqrt{6}\)
b) \(\sqrt{2+2\sqrt{2-\sqrt{2}}}.\sqrt{2-2\sqrt{2-\sqrt{2}}}\)
= \(\sqrt{4-4\left(\sqrt{2-\sqrt{2}}\right)^2}\)
= \(\sqrt{4-4.\left(2-4\sqrt{2}+2\right)}\)
= \(\sqrt{4-8+16\sqrt{2}-8}\)
= \(\sqrt{-12+16\sqrt{2}}\)
c)
\(\left(\sqrt{2}-\sqrt{7}\right).\sqrt{9+2\sqrt{14}}\)
= \(\left(\sqrt{2}-\sqrt{7}\right).\left(2+2\sqrt{7}.\sqrt{2}+7\right)\)
= \(\left(\sqrt{2}-\sqrt{7}\right).\left(\sqrt{2}+\sqrt{7}\right)^2\)
= \(\left(4-7\right).\left(\sqrt{2}+\sqrt{7}\right)\)
= \(-3.\left(\sqrt{2}+\sqrt{7}\right)\)
a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)
hay \(B=2\sqrt{10}\)
d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
hay \(D=\sqrt{2}\)
a) Ta có: \(VT=\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)
\(=\sqrt{\left(9-\sqrt{17}\right)\cdot\left(9+\sqrt{17}\right)}\)
\(=\sqrt{81-17}=\sqrt{64}=8\)=VP(đpcm)
b) Ta có: \(VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}\)
=9=VP(đpcm)
a) \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{81-17}=\sqrt{64}=8\)
b)\(\sqrt{9\left(3-a\right)^2}=3\left|3-a\right|=3\left(a-3\right)\)(vì a > 3)
\(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}\)
\(=\sqrt{\left(\sqrt{9}\right)^2}-\sqrt{\left(\sqrt{17}\right)^2}\)
\(\sqrt{9\left(3-a\right)^2}\)
\(=\sqrt{3^2\left(3-a\right)^2}\)
\(=3\left(3-a\right)\)
\(=3-3a\)