K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

ĐKXĐ: \(x\ge0\)

\(x+2\sqrt{x}+1=0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^2=0\)

\(\Rightarrow\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=-1\) (vô nghiệm)

                                                            Vậy  \(x\in\phi\)

22 tháng 11 2021

\(a,P=\left[\dfrac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}+\sqrt{x}\right]\left[\dfrac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right]\\ P=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\\ P=\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2\\ P=\left(x-1\right)^2\\ b,x=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\\ \Leftrightarrow P=\left(\sqrt{2}+1-1\right)^2=\left(\sqrt{2}\right)^2=2\)

22 tháng 11 2021

a) \(P=\left(\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)=\left[\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\right]^2=\left(x-1\right)^2\)

\(P=\left(x-1\right)^2=\left(\sqrt{\left(\sqrt{2}+1\right)^2}-1\right)^2=\left(\sqrt{2}\right)^2=2\)

31 tháng 10 2021

\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)

10 tháng 11 2023

a: A<1

=>A-1<0

=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

=>\(\dfrac{4}{\sqrt{x}-3}< 0\)

=>\(\sqrt{x}-3< 0\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

b: Để A<=2 thì A-2<=0

=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}+6}{\sqrt{x}-3}< =0\)

=>\(\dfrac{-\sqrt{x}+7}{\sqrt{x}-3}< =0\)

=>\(\dfrac{\sqrt{x}-7}{\sqrt{x}-3}>=0\)

TH1: \(\left\{{}\begin{matrix}\sqrt{x}-7>=0\\\sqrt{x}-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>=7\\\sqrt{x}>3\end{matrix}\right.\)

=>\(\sqrt{x}>=7\)

=>x>=49

TH2: \(\left\{{}\begin{matrix}\sqrt{x}-7< =0\\\sqrt{x}-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}< =7\\\sqrt{x}< 3\end{matrix}\right.\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

19 tháng 6 2023

\(A=P:Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}:\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+4}=1+\dfrac{-5}{\sqrt{x}+4}\)

Điều kiện : \(x\ge4\Rightarrow\sqrt{x}+4\ge4\Rightarrow-\dfrac{5}{\sqrt{x}+4}\le-\dfrac{5}{4}\Rightarrow\dfrac{5}{\sqrt{x}+4}\ge\dfrac{5}{4}\)

Dấu ''='' xảy ra \(\Leftrightarrow x=0\)

Vậy \(min_A=\dfrac{5}{4}\Leftrightarrow x=0\)

 

3 tháng 8 2016

a)\(\sqrt{x^2+x+\frac{1}{4}}-\sqrt{4-2\sqrt{3}}=0\)

\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=0\)

\(\Leftrightarrow x+\frac{1}{2}-\sqrt{3}+1=0\)

\(\Leftrightarrow x=\sqrt{3}-1-\frac{1}{2}\)

\(\Leftrightarrow x=\sqrt{3}-\frac{3}{2}\)

b)\(x-5\sqrt{x}+6=0\)

\(\Leftrightarrow x-2\sqrt{x}-3\sqrt{x}+6=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}-2=0\\\sqrt{x}-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=2\\\sqrt{x}=3\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=9\end{array}\right.\)

14 tháng 7 2018

a) \(2\sqrt{x}-10=20\left(ĐKXD:x\ge0\right)\)

\(\Leftrightarrow2\sqrt{x}=30\Leftrightarrow\sqrt{x}=15\)

\(\Leftrightarrow x=225\)

b) \(2x-\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)

\(\Leftrightarrow2x=\sqrt{x}\Leftrightarrow4x^2=x\Leftrightarrow4x^2-x=0\Leftrightarrow x\left(4x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)

Vậy ....

c) \(x+3\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)

Vậy x = 0

d) \(\left(x-1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)

Vậy x = 1

14 tháng 7 2018

a.\(2\sqrt{x}=20+10\)

\(2\sqrt{x}=30\)

\(\sqrt{x}=30:2\)

\(\sqrt{x}=15\)

\(x=15^2\)

x=225

29 tháng 8 2021

9.

\(A>1\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>1\)

\(\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-1>0\)

\(\Leftrightarrow\dfrac{\sqrt{x}-2-\sqrt{x}+1}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\dfrac{-1}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\sqrt{x}-1< 0\)

\(\Leftrightarrow x< 1\)

Kết hợp với điều kiện giả thiết.

29 tháng 8 2021

10.

\(P< 1\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}< 1\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-1< 0\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}< 0\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}< 0\)

\(\Leftrightarrow\sqrt{x}-1< 0\)

\(\Leftrightarrow x< 1\)

Kết hợp với điều kiện giả thiết.

6: Để P>1 thì P-1>0

\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}>0\)

\(\Leftrightarrow\sqrt{a}-2< 0\)

hay a<4

Kết hợp ĐKXĐ, ta được: \(0\le a< 4\)

5: Để P>0 thì \(x-4\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}-4>0\)

hay x>16