K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

a) \(\sqrt{0,49\cdot a^2}=\sqrt{0,7^2\cdot a^2}=\sqrt{\left(0,7\cdot\left|a\right|\right)^2}=0,7\left|a\right|\) (với a < 0)

b) \(\sqrt{25\left(7-a\right)^2}=\sqrt{\left[5\left(7-a\right)\right]^2}=5\left|7-a\right|\) (với a >/ 7)

c) \(\sqrt{a^4\left(a-2\right)^2}=a^2\left(a-2\right)=a^3-2a\) (với a >0 )

Tớ mới học nên cx ko chắc chắn lắm nhé.

19 tháng 7 2021

a) \(5\sqrt{25a^2}-25=25\left|a\right|-25==-25a-25\left(a< 0\right)\)

b) \(\sqrt{49a^2}+3a=7\left|a\right|+3a=-7a+3a\left(a< 0\right)=-4a\)

c) \(3\sqrt{9a^6}=9\left|a^3\right|-6a^3\)

Xét \(a\ge0\Rightarrow9\left|a^3\right|-6a^3=9a^3-6a^3=3a^3\)

Xét \(a< 0\Rightarrow9\left|a^3\right|-6a^3=-9a^3-6a^3=-15a^3\)

19 tháng 7 2021

a) 5\(\sqrt{25a^2}\) - 25 với a < 0

= 5\(\sqrt{\left(5a\right)^2}\) - 25

= 5.\(\left|5a\right|\) - 25

= 5.-(5a) - 25 

= -25a - 25 Vì a < 0

b) \(\sqrt{49a^2}\) + 3a với a < 0

\(\sqrt{\left(7a\right)^2}\) + 3a

\(\left|7a\right|\) + 3a

= -7a + 3a Vì a < 0

= -4a

c) 3\(\sqrt{9a^6}\) - 6a3 với a bất kì

= 3\(\sqrt{\left(3a^3\right)^2}\) - 6a3

= 3\(\left|3a^3\right|\) - 6a3

= 9a3 - 6a3

= 3a3

 Chúc bạn học tốt

5 tháng 6 2021

`A=sqrt{1+1/a^2+1/(a+1)^2}`
`=sqrt{1/a^2+2/a+1-2/a+1/(a+1)^2}`
`=sqrt{(1/a+1)^2-2/a+1/(a+1)^2}`
`=sqrt{(a+1)^2/a^2-2.(a+1)/a.(1/(a+1))+1/(a+1)^2}`
`=sqrt{((a+1)/a-1/(a+1))^2}`
`=|(a+1)/a-1/(a+1)|`
`=|1+1/a-1/(a+1)|`
`a>0=>1/a>1/(a+1)=>1+1/a-1/(a+1)>0`
`=>A=1+1/a-1/(a+1)`

5 tháng 6 2021

Áp dụng công thức ở A ta tính được

`B=1+1/1-1/2+1+1/2-1/3+1-1/3+1/4+.......+1+1/(n-1)-1/n`(ở sau bạn không ghi rõ nên mình đặt số cuối là n)

`=underbrace{1+1+....+1}_{\text{n chữ số 1}}-1/n`

`=n-1/n`

28 tháng 4 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)

\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)

\(=\frac{x+3\sqrt{x}+\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)

\(\Rightarrow P=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

b) Để P nguyên

\(\Leftrightarrow\sqrt{x}-1⋮\sqrt{x}+2\)

\(\Leftrightarrow3⋮\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{-3;-1;-5;1\right\}\)

Mà \(\sqrt{x}\ge0,\forall x\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

Vậy để P nguyên \(\Leftrightarrow x=1\)

8 tháng 11 2021

a) \(=5\left|a\right|+3a=5a+3a=8a\)

b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)

c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)

8 tháng 11 2021

làm chi tiết cho em câu b đi ạ

23 tháng 12 2017

kb đi rồi mk giải cho

31 tháng 3 2017

a) = = 0,6.│a│

Vì a < 0 nên │a│= -a. Do đó = -0,6a.

b) = . = ││.│3 - a│.

≥ 0 nên │b│= . Vì a ≥ 3 nên 3 - a ≤ 0, do đó │3 - a│= a - 3.

Vậy = (a - 3).

c) = = = √81.√16.

= 9.4.│1 - a│

Vì a > 1 nên 1 - a < 0. Do đó │1 - a│= a -1.

Vậy = 36(a - 1).

d) : = : ( = : (.│a - b│)

Vì a > b nên a -b > 0, do đó│a - b│= a - b.

Vậy : = : ((a - b)) = .

3 tháng 4 2017

a) = = 0,6.│a│

Vì a < 0 nên │a│= -a. Do đó = -0,6a.

b) = . = ││.│3 - a│.

≥ 0 nên │b│= . Vì a ≥ 3 nên 3 - a ≤ 0, do đó │3 - a│= a - 3.

Vậy = (a - 3).

c) = = = √81.√16.

= 9.4.│1 - a│

Vì a > 1 nên 1 - a < 0. Do đó │1 - a│= a -1.

Vậy = 36(a - 1).

d) : = : ( = : (.│a - b│)

Vì a > b nên a -b > 0, do đó│a - b│= a - b.

Vậy : = : ((a - b)) = .


2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)