K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

Đề bài sai : 

Ta phải có \(6n-10>0\) và \(5-3n>0\)

\(\Rightarrow n>\frac{5}{3}\) và  \(n<\frac{5}{3}\)

=> k có giá trị nào của n thoả mãn đề bài.

17 tháng 7 2016

uk, đề bài thầy ra sai^^

29 tháng 7 2016

Gọi (2n + 1,6n + 5) = d (d \(\in\)N)

=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d

=> 3 . (2n + 1) chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 5 - (6n + 3) chia hết cho d

hay 2 chia hết cho d => d \(\in\)Ư(2) => d \(\in\){-2;-1;1;2}

Mà d là lớn nhất nên d = 2

Ta thấy 6n + 5 ko chia hết cho 2 và 2n + 1 ko chia hết cho 2

=> (2n + 1,6n + 5) = 1

Vậy 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc N

Ủng hộ mk nha !!! ^_^

29 tháng 7 2016

Gọi d là Ưcln của 2n + 1 và 6n + 5

Khi đó : 2n + 1 chia hết cho d và 6n + 5 chia hết cho d

<=> 3.(2n + 1) chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d

=> (6n + 5) - (6n + 3) chia hết cho d => 2 chia hết cho d

Mà ưc của 2 là 1 => d = 1

VậY (đpcm_)

9 tháng 12 2018

-Gọi d là ƯCLN (8n + 7, 6n + 5 )

\(8n+7⋮d\Rightarrow3\left(8n+7\right)⋮d\Rightarrow24n+21⋮d\) 

\(6n+5⋮d\Rightarrow4\left(6n+5\right)⋮d\Rightarrow24n+20⋮d\)

\(\left[\left(24n+21\right)-\left(24n+20\right)\right]⋮d\)

\(\left[24n+21-24n-20\right]⋮d\)

\(1⋮d\Rightarrow d=1\)

Vậy 8n + 7 và 6n + 5 là 2 số nguyên tố cùng nhau

PP/ss: Hoq chắc

23 tháng 12 2015

trong chtt có 

tick nha

23 tháng 12 2015

tham khảo câu hỏi tương tự nha bạn

17 tháng 3 2017

Gọi \(d\inƯCLN\left(2n+1;6n+5\right)\) nên ta có :

\(2n+1⋮d\) và \(6n+5⋮d\)

\(\Leftrightarrow3\left(2n+1\right)⋮d\) và \(6n+5⋮d\)

\(\Leftrightarrow6n+3⋮d\) và \(6n+5⋮d\)

\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d=2\)

Mà \(2n+1;6n+5\) là các số lẻ nên không thể có ước là 2

\(\Rightarrow d=1\)

\(\Rightarrow2n+1\) và \(6n+5\) là nguyên tố cùng nhau

31 tháng 7 2018

Giả sử 2n+1 và 6n+5 ko phải là 2 số nguyên tố cùng nhau thì:

cho d là ƯCLN của chúng và d>1

ta có:2n+1chia hết cho d,vậy 6n+3 cũng chia hết cho d

suy ra:6n+5-(6n+3) chia hết cho d

vậy 2 chia hết cho d

mà các ƯC của 2 là :2 và 1

mà cả 2 số đã cho đều là số lẻ,nên d phải bằng 1

nhưng như vậy thì trái với giả thuyết mà chúng ta đặt ra ban đầu

vậy 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau