Giá trị của biểu thức
8x(2x-1)-(4x-1)2-13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)
\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)
\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Cứ nói người ta ngu trong khi cứ ngồi đó,giỏi thì làm đi
Bài 4:
Ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)
\(\Leftrightarrow-62x=-92\)
hay \(x=\dfrac{46}{31}\)
c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)
\(\Leftrightarrow V\ge-1\forall x\)
Dấu '=' xảy ra khi x=1
Lời giải:
$(2x-1)(8x-3)-(4x-1)^2+6x=16x^2-6x-8x+3-(16x^2-8x+1)+6x$
$=16x^2-14x+3-16x^2+8x-1+6x$
$=(16x^2-16x^2)+(-14x+8x+6x)+(3-1)=0+0+2=2$ là giá trị không phụ thuộc vào biến $x$
8x(2x-1)-(4x-1)2-13
=16x2-8x-(16x2-8x+1)-13
=-1-13=-14