So sánh các số a,b,c biết rằng a/b=b/c=c/a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ có thể là a = b = c thôi
Nếu không bằng nhau thì làm sao mà a/b = b/c = c/a được ?
Đúng không bạn
Nếu đúng thì làm ơn cho 1 điểm nhé
Vì mình mới lớp 6 thôi
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a=b, b=c, c=a
=> a=b=c
Ap dung tinh chat day ti so bang nhau ta co :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)\(1\)
\(\Rightarrow\)\(a=b,b=c,c=a\)
\(\Rightarrow\)\(a=b=c\)
Đặt a/b = b/c = c/a = k
=> a = bk, b = ck, c = ak
=> a + b + c = bk + ck + ak = k(a + b + c)
=> k = 1
a/b = k = 1 => a = b
b/c = k = 1 => b = c
Vậy a = b = c.
Cách này có thể dùng với những dãy tỉ số bằng nhau rất dài vì chỉ quy về 1 ẩn nên dễ giải hơn nhiều
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> \(a=b=c\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=>a/b=1
b/c=1
c/a=1
hay a=b=c=1
Ta có: a<b
\(\Rightarrow a+c< b+c\)
\(\Rightarrow a.\left(a+c\right)< b.\left(b+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b\in Z+;c\in N\right)\)
cách 1
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/b = b/c = c/a = (a + b + c)/(b + c + a) = 1
Do a/b = 1 => a = b (1)
Do b/c = 1 => b = c (2)
Do c/a = 1 => c = a (3)
Từ (1); (2); (3) => a = b = c.
cách 2
Khi đó ta có hệ : a/b = b/c
a/b = c/a
=> b*b = ac (1)
a*a = bc (2) Nhân vế theo vế => a*a*b*b = abc*c => ab = c*c (3)
Thay vào (1) ta có : b*b = a*ab => b = a*a (4)
Thay (4) vào (3) ta có : c = Căn bậc 2 của a mũ 3 c = a x Căn bậc 2 của a
Từ đó suy ra : a < b <c
bn thích chọn cách nào thì chọn nhưng nhớ k mk nha!! ^o~