K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 21: So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)A. M > N                      B. M < N                    C. M = N                         D. M = N – 1Câu 22: Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8xA. 5                         B. -5                               C....
Đọc tiếp

Câu 21So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

A. M > N                      B. M < N                    C. M = N                         D. M = N – 1

Câu 22Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8x

A. 5                         B. -5                               C. 8                                       D.-8  

Câu 23Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khi

A. x = 9                           B. x = 10                 C. x = 11                              D.x = 12

Câu 24Kết quả của phép chia 15x3y4 : 5x2y2 là

A. 3xy2                            B. -3x2y                        C. 5xy                                  D. 15xy2

Câu 25Kết quả của phép chia (6xy2 + 4x2y – 2x3) : 2x là

A. 3y2 + 2xy – x2                B. 3y2 + 2xy + x2           C. 3y2 – 2xy – x2                        D. 3y2 + 2xy

1
23 tháng 11 2021

Câu 21So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

A. M > N                      B. M < N                    C. M = N                         D. M = N – 1

Câu 22Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8x

A. 5                         B. -5                               C. 8                                       D.-8  

Câu 23Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khi

A. x = 9                           B. x = 10                 C. x = 11                              D.x = 12

Câu 24Kết quả của phép chia 15x3y4 : 5x2y2 là

A. 3xy2                            B. -3x2y                        C. 5xy                                  D. 15xy2

Câu 25Kết quả của phép chia (6xy2 + 4x2y – 2x3) : 2x là

A. 3y2 + 2xy – x2                B. 3y2 + 2xy + x2           C. 3y2 – 2xy – x2                        D. 3y2 + 2xy

29 tháng 3 2019

Ta có

N   =   ( 2   +   1 ) ( 2 2   +   1 ) ( 2 4   +   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     ( 2 16   +   1 )   =   3 ( 2 2   +   1 ) ( 2 4   +   1 ) ( 2 8   +   1 )     ( 2 16   +   1 )   =   [ ( 2 2   –   1 ) ( 2 2   +   1 ) ] ( 2 4   +   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     =   ( 2 4   –   1 ) ( 2 4   +   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     =   ( 2 8   –   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     =   ( 2 16   -   1 ) ( 2 16   +   1 )   = 2 16 2 − 1 = 2 32 − 1 M à   2 32 − 1 > 2 32 ⇒   N < M

Đáp án cần chọn là: A

a:

Số số hạng trong dãy M là:

(1002-12):10+1=100(số)

=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10

\(M=1002-992+982-972+...+22-12\)

\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)

\(=10+10+...+10\)

=10*50=500

b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)

\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)

=10+10+...+10

=10*10=100

7 tháng 2 2021

2, - Để hệ phương trình có nghiệm duy nhất :

\(\Leftrightarrow\dfrac{3}{m-1}\ne\dfrac{m-1}{12}\ne\dfrac{1}{2}\)

\(\Rightarrow m\ne7\)

- Hệ PT \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12-\left(m-1\right)y}{3}\\\left(m-1\right)x+12y=24\end{matrix}\right.\)

- Thay x từ PT ( I) vào PT ( II ) ta được :\(\dfrac{\left(m-1\right)\left(12-my+y\right)}{3}+12y=24\)

\(\Leftrightarrow12m-m^2y+my-12+my-y+36y=72\)

\(\Leftrightarrow y\left(-m^2+2m+35\right)=84-12m\)

\(\Leftrightarrow y=\dfrac{84-12m}{-m^2+2m+35}=\dfrac{12\left(7-m\right)}{\left(m+5\right)\left(m-7\right)}=-\dfrac{12}{m+5}\)

- Thay lại y vào PT ( I ) ta được : \(x=\dfrac{12+\dfrac{12\left(m-1\right)}{m+5}}{3}\)

\(=\dfrac{\dfrac{12\left(m+5\right)+12\left(m-1\right)}{m+5}}{3}=\dfrac{12\left(2m+4\right)}{3\left(m+5\right)}=\dfrac{8\left(m+2\right)}{m+5}\)

- Ta có : \(x+y=\dfrac{8\left(m+2\right)}{m+5}-\dfrac{12}{m+5}=\dfrac{8m+16-12}{m+5}=\dfrac{8m+4}{m+5}\)

- Để \(x+y>1\)

\(\Leftrightarrow\dfrac{8m+4-m-5}{m+5}=\dfrac{7m-1}{m+5}>0\)

- Lập bảng xét dấu :

- Từ bảng xét dấu : - Để x + y > 1 thì :

\(m\in\left(-\infty;-5\right)\cup\left(\dfrac{1}{7};+\infty\right)\backslash\left\{7\right\}\)

Vậy ...

a, - Thay m = 2 lần lượt vào x, y chứa tham số m ta được :

x = \(\dfrac{24}{7};y=\dfrac{12}{7}\)