Cho M= 1/12+ 1/22+ ...+1/102
So sánh M cới 1/1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 21: So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
A. M > N B. M < N C. M = N D. M = N – 1
Câu 22: Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8x
A. 5 B. -5 C. 8 D.-8
Câu 23: Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khi
A. x = 9 B. x = 10 C. x = 11 D.x = 12
Câu 24: Kết quả của phép chia 15x3y4 : 5x2y2 là
A. 3xy2 B. -3x2y C. 5xy D. 15xy2
Câu 25: Kết quả của phép chia (6xy2 + 4x2y – 2x3) : 2x là
A. 3y2 + 2xy – x2 B. 3y2 + 2xy + x2 C. 3y2 – 2xy – x2 D. 3y2 + 2xy
Ta có
N = ( 2 + 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) ( 2 16 + 1 ) = 3 ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = [ ( 2 2 – 1 ) ( 2 2 + 1 ) ] ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = ( 2 4 – 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = ( 2 8 – 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = ( 2 16 - 1 ) ( 2 16 + 1 ) = 2 16 2 − 1 = 2 32 − 1 M à 2 32 − 1 > 2 32 ⇒ N < M
Đáp án cần chọn là: A
a:
Số số hạng trong dãy M là:
(1002-12):10+1=100(số)
=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10
\(M=1002-992+982-972+...+22-12\)
\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)
\(=10+10+...+10\)
=10*50=500
b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)
\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)
=10+10+...+10
=10*10=100
2, - Để hệ phương trình có nghiệm duy nhất :
\(\Leftrightarrow\dfrac{3}{m-1}\ne\dfrac{m-1}{12}\ne\dfrac{1}{2}\)
\(\Rightarrow m\ne7\)
- Hệ PT \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12-\left(m-1\right)y}{3}\\\left(m-1\right)x+12y=24\end{matrix}\right.\)
- Thay x từ PT ( I) vào PT ( II ) ta được :\(\dfrac{\left(m-1\right)\left(12-my+y\right)}{3}+12y=24\)
\(\Leftrightarrow12m-m^2y+my-12+my-y+36y=72\)
\(\Leftrightarrow y\left(-m^2+2m+35\right)=84-12m\)
\(\Leftrightarrow y=\dfrac{84-12m}{-m^2+2m+35}=\dfrac{12\left(7-m\right)}{\left(m+5\right)\left(m-7\right)}=-\dfrac{12}{m+5}\)
- Thay lại y vào PT ( I ) ta được : \(x=\dfrac{12+\dfrac{12\left(m-1\right)}{m+5}}{3}\)
\(=\dfrac{\dfrac{12\left(m+5\right)+12\left(m-1\right)}{m+5}}{3}=\dfrac{12\left(2m+4\right)}{3\left(m+5\right)}=\dfrac{8\left(m+2\right)}{m+5}\)
- Ta có : \(x+y=\dfrac{8\left(m+2\right)}{m+5}-\dfrac{12}{m+5}=\dfrac{8m+16-12}{m+5}=\dfrac{8m+4}{m+5}\)
- Để \(x+y>1\)
\(\Leftrightarrow\dfrac{8m+4-m-5}{m+5}=\dfrac{7m-1}{m+5}>0\)
- Lập bảng xét dấu :
- Từ bảng xét dấu : - Để x + y > 1 thì :
\(m\in\left(-\infty;-5\right)\cup\left(\dfrac{1}{7};+\infty\right)\backslash\left\{7\right\}\)
Vậy ...
a, - Thay m = 2 lần lượt vào x, y chứa tham số m ta được :
x = \(\dfrac{24}{7};y=\dfrac{12}{7}\)