tim 3 so nguyen to a,b,c sao cho abc nho hon ab+bc+ca
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\Rightarrow ab+bc+ca\le ab+ab+ab=3ab\)
\(\Rightarrow abc< 3ab\Rightarrow c< 3\Rightarrow c=2\)
\(\Rightarrow2ab< ab+2\left(a+b\right)\Rightarrow ab< 2\left(a+b\right)\)
\(\Rightarrow ab-2b-2b+4< 4\Rightarrow\left(a-2\right)\left(b-2\right)< 4\)
\(\Rightarrow\left(a-2\right)\left(b-2\right)=\left\{1;2;3\right\}\)
- Với \(\left(a-2\right)\left(b-2\right)=1\Rightarrow a=b=3\)
- Với \(\left(a-2\right)\left(b-2\right)=2\Rightarrow\left[{}\begin{matrix}a=4;b=3\\a=3;b=4\end{matrix}\right.\) (loại)
- Với \(\left(a-2\right)\left(b-2\right)=3\Rightarrow\left[{}\begin{matrix}a=5;b=3\\a=3;b=5\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)=\left(2;3;5\right)\) và các hoán vị của chúng
![](https://rs.olm.vn/images/avt/0.png?1311)
a, - 3 \(\le\) n < 5
n \(\in\left\{-3;-2;-1;0;1;2;3;4\right\}\)
b, Tổng :
- 3 + ( - 2 ) + ( - 1 ) + 0 + 1 + 2 + 3 + 4
= [ ( - 3 ) + 3 ] + [ ( - 2 ) + 21 ] + [ ( - 1 ) + 1 ] + 0 + 4
= 0 + 0 + 0 + 0 + 4 = 4
![](https://rs.olm.vn/images/avt/0.png?1311)
abc < ab+bc+ac
<=> 1/a+1/b+1/c > 1 (*)
giả sử a > b >c => 1/a < 1/b <1/c
1 < 1/a +1/b +1/c < 1/c + 1/c + 1/c = 3/c => c < 3 => c = 2
thay c = 2 vào (*) được:
1/2 < 1/a + 1/b < 1/b + 1/b = 2/b => 2 < b < 4 => b = 3
thay b = 3; c = 2 vào (*) được:
1/a > 1 - 1/2 - 1/3 = 1/6 => 3 < a < 6 => a = 5
vậy (a;b;c) = (2;3;5)
cho mình 1 đ-ú-n-g nha
abc < ab+bc+ac
<=> 1/a+1/b+1/c > 1 (*)
giả sử a > b >c => 1/a < 1/b <1/c
1 < 1/a +1/b +1/c < 1/c + 1/c + 1/c = 3/c => c < 3 => c = 2
thay c = 2 vào (*) được:
1/2 < 1/a + 1/b < 1/b + 1/b = 2/b => 2 < b < 4 => b = 3
thay b = 3; c = 2 vào (*) được:
1/a > 1 - 1/2 - 1/3 = 1/6 => 3 < a < 6 => a = 5
vậy (a;b;c) = (2;3;5)