tìm công thức tổng quát
√2+√5+√10+...+√n^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_n-4u_{n-1}+3u_{n-2}=5.2^n\)
\(\Leftrightarrow u_n-u_{n-1}-3\left(u_{n-1}-u_{n-2}\right)=5.2^n\)
Đặt \(u_n-u_{n-1}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=u_1-u_0=4\\v_n-3v_{n-1}=5.2^n\end{matrix}\right.\)
\(\Rightarrow v_n+10.2^n=3\left(v_{n-1}+10.2^{n-1}\right)\)
Đặt \(v_n+10.2^n=x_n\Rightarrow\left\{{}\begin{matrix}x_1=v_1+10.2^1=24\\x_n=3x_{n-1}\end{matrix}\right.\)
\(\Rightarrow x_n\) là CSN với công bội 3
\(\Rightarrow x_n=24.3^{n-1}\)
\(\Rightarrow v_n=x_n-10.2^n=24.3^{n-1}-10.2^n=8.3^n-10.2^n\)
\(\Rightarrow u_n-u_{n-1}=8.3^n-10.2^n\)
\(\Rightarrow u_n-12.3^n+20.2^n=u_{n-1}-12.3^{n-1}+20.2^{n-1}\)
Đặt \(u_n-12.3^n+20.2^n=y_n\Rightarrow\left\{{}\begin{matrix}y_1=u_1-12.3^1+20.2^1=7\\y_n=y_{n-1}=...=y_1=7\end{matrix}\right.\)
\(\Rightarrow u_n=12.3^n-20.2^n+7\)
Ta có :\(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(n\in N^{\cdot}\right)\)
\(\Rightarrow S_{n-1}=1^2+2^2+3^2+...+\left(n-1\right)^2=\dfrac{\left(n-1\right)\left(n-1+1\right)\left(2n-2+1\right)}{6}=\dfrac{n\left(n-1\right)\left(2n-1\right)}{6}\)
Đáp án B
Ta có u n = u n u n + 2
⇔ 1 u n = u n + 2 u n = 1 + 2 u n
Đặt v n = 1 u n ⇒ v 1 = 1 v n = 1 + 2 v n - 1
⇒ v n = 2 n - 1 ⇒ u n = 1 2 n - 1
Ta có : 2n - 5 ⋮ n + 1
<=> 2n + 2 - 7 ⋮ n + 1
<=> 2(n + 1) - 7 ⋮ n + 1
Vì 2(n + 1) ⋮ n + 1 √ n ∈ Z , Để 2(n + 1) - 7 ⋮ n + 1 <=> 7 ⋮ n + 1
=> n + 1 ∈ Ư(7) = { ± 1; ± 7 }
Ta có : n + 1 = - 7 => n = - 7 - 1 = - 8 (loại)
n + 1 = - 1 => n = - 1 - 1 = - 2 (loại)
n + 1 = 1 => n = 1 - 1 = 0 (TM)
n + 1 = 7 => n = 7 - 1 = 6 (TM)
Vậy với n ∈ { 0; 6 } thì 2n - 5 ⋮ n + 1
Ta có:
u 2 = u 1 + 2 = 3 + 2 = 5.
u 3 = u 2 + 2 = 5 + 2 = 7.
u 4 = u 3 + 2 = 7 + 2 = 9.
u 5 = u 4 + 2 = 9 + 2 = 11.
Từ các số hạng đầu trên, ta dự đoán số hạng tổng quát u n có dạng:
u n = 2 n + 1 ∀ n ≥ 1 ∗
Ta dùng phương pháp chứng minh quy nạp để chứng minh công thức (*) đúng.
Với n =1 ; u 1 = 2 . 1 + 1 = 3 (đúng). Vậy (*) đúng với n =1
Giả sử (*) đúng với n =k. Có nghĩa ta có: u k = 2 k + 1 (2)
Ta cần chứng minh (*) đúng với n = k+1 - có nghĩa là ta phải chứng minh:
u k + 1 = 2(k+1)+1= 2k + 3
Thật vậy từ hệ thức xác định dãy số và theo (2) ta có:
u k + 1 = u k +2 = 2k +1 +2 = 2k + 3
Vậy (*) đúng khi n = k+1 .
Kết luận (*) đúng với mọi số nguyên dương n.
Đáp án B