\(\frac{3x+1}{17}+\frac{3x+1}{19}+\frac{3x+1}{23}\)=\(\frac{3x+1}{29}+\frac{3x+1}{31}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b) Đặt x2 + x + 1 = t > 0 (dễ c/m t > 0 rồi ha)
Khi đó, pt tương đương: \(t\left(t+1\right)=12\Leftrightarrow t^2+t-12=0\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-4\left(L\right)\end{matrix}\right.\)
t = 3 suy ra \(x^2+x+1=3\Leftrightarrow x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy...
c) Chị xem lại đề giúp em ạ.

a, 1 - 7x = 3x - 4
=> -7x - 3x = - 4 - 1
=> - 10x = - 5
=> x = 1/2
vậy_
b, đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3A-A=1-\frac{1}{3^{99}}\)
\(A=\frac{1-\frac{1}{3^{99}}}{2}\)
mk chỉ bt lm mấy phần hui à!
d)\(\frac{5}{17}+\frac{-4}{7}-\frac{20}{31}+\frac{12}{17}-\frac{11}{31}\)\(=\left(\frac{5}{17}+\frac{12}{17}\right)+\left(\frac{-20}{31}-\frac{11}{31}\right)+\frac{-4}{7}\)
\(=\frac{17}{17}+\frac{-31}{31}+\frac{-4}{7}\)\(=1+\left(-1\right)+\frac{-4}{7}\)\(=0+\frac{-4}{7}\)\(=-\frac{4}{7}\)
e)\(\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{20}{7}-\frac{13}{3}+\frac{13}{23}}\)

Câu hỏi của Nguyễn Nhã Linh - Toán lớp 8 - Học toán với OnlineMath
Bạn tham khảo câu b nhé!
\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}\)= \(\frac{1-3x}{1+3x}\)- \(\frac{1+3x}{1-3x}\) (đkxđ: x khác +-(1/3)) \(\frac{12}{\left(1-3x\right)\left(1+3x\right)}\)=\(\frac{\left(1-3x\right)\left(1-3x\right)-\left(1+3x\right)\left(1+3x\right)}{\left(1+3x\right)\left(1-3x\right)}\) \(12=\left(1-6x+9x^2\right)-\left(1+6x+9x^2\right)\) \(12=1-6x+9x^2-1-6x-9x^2\) \(12=-12x \\ \) \(-1=x\)
\(\Leftrightarrow\frac{3x+1}{17}+\frac{3x+1}{19}+\frac{3x+1}{23}-\frac{3x+1}{29}-\frac{3x+1}{31}=0\)
\(\Leftrightarrow\left(3x+1\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{23}-\frac{1}{29}-\frac{1}{31}\right)=0\)
\(\Leftrightarrow3x+1=0\) ( vì \(\frac{1}{17}+\frac{1}{19}+\frac{1}{23}-\frac{1}{29}-\frac{1}{31}\ne0\))
\(\Leftrightarrow3x=-1\)
\(\Leftrightarrow x=-\frac{1}{3}\)
\(\frac{3x+1}{17}+\frac{3x+1}{19}+\frac{3x+1}{23}=\frac{3x+1}{29}+\frac{3x+1}{31}\)
\(\Rightarrow\frac{3x+1}{17}+\frac{3x+1}{19}+\frac{3x+1}{23}-\frac{3x+1}{29}-\frac{3x+1}{31}=0\)
\(\Rightarrow\left(3x+1\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{23}-\frac{1}{29}-\frac{1}{31}\right)=0\)
Mà \(\frac{1}{17}+\frac{1}{19}+\frac{1}{23}-\frac{1}{29}-\frac{1}{31}\ne0\)
\(\Rightarrow3x+1=0\)
\(\Rightarrow x=-\frac{1}{3}\)