Cho:a^2+b^2=54
a+b=8
a>b>0
Tìm a,b.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt cô si dạng engel cho 2 số dương:
\(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)
Vậy đẳng thức chỉ xảy ra khi \(\frac{x}{a}=\frac{y}{b}\)
Áp dụng BĐT Cosi dạng engel cho 3 số dương ta có:
\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Dấu "=" xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Ta thấy \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\)đều là số dương
Vì thế nên ta sẽ áp dụng bđt cô-si dạng engel:
\(\frac{x^2+y^2+z^2}{a+b+c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Vậy đẳng thức chỉ xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Bài này mình gặp rất nhiều khó khăn khi biến đổi, và vì biểu thức quá dài nên mình phải dùng ký hiệu \(\Sigma_{sym}\), có thể sẽ gặp phải những sai sót-> sai cả bài, do đó bài làm bên dưới chỉ nêu hướng làm thôi (quy đồng).
Nhân hai vế của BĐT cho \(2\left(ab+bc+ca\right)\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)\) BĐT cần chứng minh tương đương:
\(\Leftrightarrow\)\(3\Sigma_{sym}a^3b^3c+\Sigma_{sym}ab^4c^2\ge3\Sigma_{sym}a^5bc+\Sigma_{sym}a^4b^3\)
\(\Leftrightarrow3\Sigma_{sym}\left(a^3b^3c-ab^5c\right)+\Sigma_{sym}b^4c^2a\ge\Sigma_{sym}a^4b^3\)
Do \(3\Sigma_{sym}\left(a^3b^3c-ab^5c\right)\ge0\) theo định lí Muirhead.
Do đó ta sẽ chứng minh: \(\Sigma_{sym}b^4c^2a\ge\Sigma_{sym}a^4b^3\). Và chịu:(
Không mất tính tổng quát, ta giả sử c là số nhỏ nhất.
Đặt \(f\left(a;b;c\right)=VP-VT\) và \(t=\frac{a+b}{2}\)
Trước hết ta chứng minh \(f\left(a;b;c\right)\ge f\left(t;t;c\right)\).
Xét hiệu hai vế và nó tương đương ta thấy nó \(\ge0\) do giả sử:
Vậy ta chỉ cần chứng minh \(f\left(t;t;c\right)\ge0\Leftrightarrow\frac{\left(c-t\right)^2\left(3c^2+3ct+2t^2\right)}{2t\left(c+t\right)\left(2c+t\right)\left(c^2+t^2\right)}\ge0\) (đúng)
Vậy ta có đpcm.
P/s: Lần sau cho đề đẹp đẹp tí, kiểu này quy đồng mà không có máy tính thì cực chetme:(
Ta có : a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
Ta có : a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
Lời giải:
Vận tốc xuôi dòng: $54:2=27$ (km/h)
Vận tốc ngược dòng: $54:3=18$ (km/h)
Vận tốc dòng nước (hay vận tốc cụm bèo):
$(27-18):2=4,5$ (km/h)
Cụm bèo trôi từ A đến B hết số giờ là:
$54:4,5=12$ (giờ)