K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

mình trả lời xong nhớ mình!!

đặt ẩn phụ là phương pháp đặt một biểu thức có chứa biến thành dạng kí tự ngắn gọn để dễ trình bày bài ,nghĩ thoáng hơn ,dễ hiểu

VD; giải PT \(\left(x-1\right)\left(x+3\right)=3\)

đặt  \(x+2=a\)

\(\Rightarrow\)phương trình đề bài \(\Leftrightarrow\left(a-1\right)\left(a+1\right)=3\)

                                      \(\Leftrightarrow a^2-1=3\)

                                      \(\Leftrightarrow a^2=4\)

                                    \(\Leftrightarrow a=\orbr{\begin{cases}-2\\2\end{cases}}\)

vậy S={-2;2}

thế hiểu chưa??????????

chưa hiểu thì kết bạn r mình giảng lại cho

11 tháng 7 2016

hiểu đc gì chết liền

24 tháng 1 2022

C1: 

Bảo toàn C: nC = 0,4 (mol)

Bảo toàn H: nH = 1,2 (mol)

=> mhh = 12.0,4 + 1.1,2 = 6(g)

C2: 

Bảo toàn O: nO2 = \(\dfrac{0,4.2+0,6}{2}=0,7\left(mol\right)\)

Theo ĐLBTKL: mhh + mO2 = mCO2 + mH2O

=> mhh = 0,4.44 + 0,6.18 - 0,7.32 = 6(g)

C3:

Gọi công thức chung của hh là CxH4

PTHH: CxH4 + (x+1)O2 --to--> xCO2 + 2H2O

               a------------------------>ax----->2a

=> \(\left\{{}\begin{matrix}ax=0,4\\2a=0,6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=0,3\\x=\dfrac{4}{3}=>CTHH:C_{\dfrac{4}{3}}H_4\end{matrix}\right.\)

=> \(m_{hh}=0,3.20=6\left(g\right)\)

 

7 tháng 2 2019

Bài 1 :

Mình nghĩ phải sửa đề ntn :

\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{-23}{7}\end{cases}}}\)

Vậy....

b) \(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(q=x^2+x+1\)ta có :

\(A=q\left(q+1\right)-12\)

\(A=q^2+q-12\)

\(A=q^2+4q-3q-12\)

\(A=q\left(q+4\right)-3\left(q+4\right)\)

\(A=\left(q+4\right)\left(q-3\right)\)

Thay \(q=x^2+x+1\)ta có :

\(A=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)\)

\(A=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(A=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

7 tháng 2 2019

Cảm ơn ạ><

11 tháng 4 2023

đkxđ: \(\dfrac{x+3}{x-1}\ge0\)

Ptr ⇔\(\left(x-1\right)\left(x+3\right)+\dfrac{2\left(x-1\right)\sqrt{\left(x+3\right)\left(x-1\right)}}{x-1}=8\\ \Leftrightarrow\left(x-1\right)\left(x+3\right)+2\sqrt{\left(x-1\right)\left(x+3\right)}-8=0\) 

Đặt \(\sqrt{\left(x-1\right)\left(x+3\right)}=a\)      (a≥0)

Ptr ⇔ \(a^2+2a-8=0\) 

⇔a=2 (tm) hoặc a=-4 (loại)

\(\sqrt{\left(x-1\right)\left(x+3\right)}=2\)

\(x^2+2x-3=4\)

\(\Leftrightarrow x^2+2x-7=0\)

⇔ \(x=-1+2\sqrt{2}\)        (tm)

hoặc \(x=-1-2\sqrt{2}\) (tm)

Vậy...

27 tháng 10 2021

ĐK: \(x\ge-2\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{x^2-2x+4}=b\ge0\end{matrix}\right.\Leftrightarrow a^2+b^2=x^2-x+6\), PTTT:

\(5ab=2\left(a^2+b^2\right)\\ \Leftrightarrow2a^2-5ab+2b^2=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\)

Với \(a=2b\Leftrightarrow x+2=4\left(x^2-2x+4\right)\)

\(\Leftrightarrow4x^2-8x+16=x+2\\ \Leftrightarrow4x^2-9x+14=0\\ \Delta=81-224< 0\\ \Leftrightarrow x\in\varnothing\)

Với \(2a=b\Leftrightarrow4\left(x+2\right)=x^2-2x+4\)

\(\Leftrightarrow4x+8=x^2-2x+4\\ \Leftrightarrow x^2-6x-4=0\\ \Delta=36+16=52\\ \Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{13}\left(tm\right)\\x=3-\sqrt{13}\left(tm\right)\end{matrix}\right.\)

Vậy PT có nghiệm \(x=3\pm\sqrt{13}\)

AH
Akai Haruma
Giáo viên
27 tháng 10 2021

Lời giải:

ĐKXĐ: $x\geq -2$

PT $\Leftrightarrow 5\sqrt{(x+2)(x^2-2x+4)}=2(x^2-x+6)$

Đặt $\sqrt{x+2}=a; \sqrt{x^2-2x+4}=b(a,b\geq 0)$ thì pt trở thành:

$5ab=2(a^2+b^2)$

$\Leftrightarrow 2a^2-5ab+2b^2=0$

$\Leftrightarrow (2a-b)(a-2b)=0$

$\Rightarrow 2a=b$ hoặc $a=2b$

Nếu $2a=b\Leftrightarrow 4a^2=b^2$

$\Leftrightarrow 4(x+2)=x^2-2x+4$

$\Leftrightarrow x=3\pm \sqrt{13}$ (tm)

Nếu $a=2b\Leftrightarrow a^2=4b^2$

$\Leftrightarrow x+2=4(x^2-x+6)$

$\Leftrightarrow 4x^2-5x+22=0$ (dễ thấy pt này vô nghiệm)
 

7 tháng 6 2018

1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)

Thì ta có:

\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)

\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)

7 tháng 6 2018

2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)

\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)

\(=\frac{3}{4}\)

=>x^2-4x+2y^2-4y+6=0

=>x^2-4x+4+2y^2-4y+2=0

=>(x-2)^2+2(y-1)^2=0

=>x=2 và y=1