Tìm x nguyên biết ( x ^ 2 -1 ) ( x ^ 1 - 4 ) ( x ^ 1 -7 ) ( x ^ 1 -10 ) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-1>x^2-4>x^2-7>x^2-10\)
\(\text{Để }\left(x^2-1\right).\left(x^2-4\right).\left(x^2-7\right).\left(x^2-10\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left(x^2-1\right)>0\\\left(x^2-4\right).\left(x^2-7\right).\left(x^2-10\right)< 0\end{cases}\text{hoặc }\hept{\begin{cases}\left(x^2-1\right).\left(x^2-4\right).\left(x^2-7\right)>0\\\left(x^2-10\right)< 0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\text{hoặc }\hept{\begin{cases}x^2>7\\x^2< 10\end{cases}}}\)
\(\Rightarrow x^2=9\Rightarrow x=\pm3\)
(x^2-1)(x^2-4)(x^2-7)(x^2-10)<0
=> có 3 thừa số âm, 1 thừa số dương
dĩ nhiên thừa so dương là thừa số lớn nhất trong biểu thức. vậy x^2-1 lớn nhất. => x^2 - 1 >0 thì x^2 >1
mặt khác, cũng có thể là 3 thừa so dương, 1 thừa số âm
dĩ nhiên thừa số âm là thừa số có giá trị nhỏ nhất trong biểu thức. vậy x^2-10 nhỏ nhất => x^2 - 10 <0 thì x^2 < 10
giới hạn vị trí của x^2, ta được:
10>x^2>1^2
=> x^2= {4;9}
nếu x^2=4 thì x^2-4=0 => biểu thức=0
vậy x^2=9 thì x={3;-3}
a, x-3=0 hoặc 4-x=0 suy ra x=3 hoặc x=4 ;3x-9=0 hoặc 3-3x=0 suy ra x=3 hoặc x=1
b,10:.x suy ra x thuộc Ư(10)=1,2,5,10
:7:.x+2suy ra x+2 thuộc Ư(7)=1,7suy ra x =-1;5 ,
12:.2x+1suy ra 2x+1 thuộc Ư(12)=1,2,3,4,6,12suy ra x=0,1
c,mình chịu
d,tổng x là:11; tổng x là:0
1 a x=4
b x=-4
c x=-7
d x=3
e x=10
g x=60
h x=36
i x=16
2a 1,2,3,4,5,6,7,8,9
b 1,2,3,4,5,6,7,8,9.........
c rỗng
3a 0
b 0
c10