a-b=2(a+b)=a.b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.b=c2
thay vào 2 ta có: \(\frac{a^2+a.b}{b^2+a.b}=\frac{a}{b}\)
nhân ra ta có:a2 .b +a.b2 =a.b2+a2.b
tks nha :)
Mà em làm cái này tr'c a, do thấy a off nên thôi, tự suy nghĩ cho rồi, e dựa vào lời chỉ của a nên e tự làm, thế mà cxung đúng
1)
a.b=42 => a,b ∈ Ư(42)= {1;2;3;6;7;14;21;42}
a,b là 2 số tự nhiên và a.b=42 => (a;b)= (6;7) (Nhận) ; (a;b)= (7;6) (Loại)
=> a=6;b=7
2)
a.b=30 => a;b ∈ Ư(30)= {1;2;3;5;6;10;15;30}
Các cặp ban đầu (1;30) loại; (2;15) loại; (3;10) loại; (5;6) nhận
Vì: a < b => a=5;b=6
+ Chứng minh (a + b)2 = (a – b)2 + 4ab
Ta có:
VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab
= a2 + (4ab – 2ab) + b2
= a2 + 2ab + b2
= (a + b)2 = VT (đpcm)
+ Chứng minh (a – b)2 = (a + b)2 – 4ab
Ta có:
VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab
= a2 + (2ab – 4ab) + b2
= a2 – 2ab + b2
= (a – b)2 = VT (đpcm)
+ Áp dụng, tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
\(A=a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(a-b+1\right)\)\(=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab\)
\(=\left(a^3-3a^2b+3ab^2-b^3\right)+\left(a^2-2ab+b^2\right)\)\(=\left(a-b\right)^3+\left(a-b\right)^2=7^3+7^2=392\)