cho tam giác ABC nhọn nội tiếp đường tròn (O;R) gọi M là trung điểm BC giả sử O nằm giữa A và M hoặc O nằm trong tam giác AMC.CMR a) chu vi tam giác IMC lớn hơn 2R
b) chu vi tam giác ABC lớn hơn 4R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C L' K O J E D I F L
Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.
Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)
Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)
Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)
Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'
=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp
Áp dụng phương tích đường tròn có: FK.FC=FD.FL' (1)
Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF
=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g) => FA2 = FK.FC (2)
Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)
=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2
Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp
Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L
Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2
Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).
a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)
=> Tứ giác BCFK nội tiếp
b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )
mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)
=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị
=> KF//DE
a: góc HMC+góc HNC=180 độ
=>HMCN nội tiếp
b: góc CAD=góc NBC
=>1/2*sđ cung CD=1/2*sđ cung CE
=>CD=CE
c: góc BHM=góc BCN=1/2*sđ cung BA
góc BDH=1/2*sđ cung BA
=>góc BHD=góc BDH
=>ΔBHD cân tại B
Xét tứ giác BCDE có
\(\widehat{BDC}=\widehat{BEC}=90^0\)
hay BCDE là tứ giác nội tiếp