Cho phân số a/b > 1; a,b>0. Hãy so sánh 2 phân số a/b và a+m/b+m ( m là số tự nhiên khác 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực ra, ngoài 2/5 ; 3/5 và 4/5 có vô số phân số khác thỏa mãn đề bài.
Ví dụ : 87/100; 182/265; 1024/5555; ....
Ta có: \(1=\frac{5}{5}\)
suy ra 1 > a/b > 1/5
suy ra 5/5 > a/b > 1/5
Do đó giá trị của a/b là 2/5 ; 3/5 ; 4/5
ta ví dụ a/b = 5/4
ta có 5/4 ... 5+1/4+1
= 5/4 ... 6/5
ta quy đồng được :5/4 = 25/20 ; 6/5 = 24/20
=> a/b > a+m/b+m
Ta có : a/b = a*(b+m)/b*(b+m) = ab+am/b*(b+m)
a+m/b+m = (a+m)*b/(b+m)*b = ab+bm/b*(b+m)
Vì a/b > 1 => a > b hay am > bm
Vậy ab+am/b*(b+m) > ab+bm/b*(b+m) Hay a/b > a+m/b+m
Do a/b > 1 => a > b
=> a.n > b.n
=> a.n + a.b > b.n + a.b
=> a.(b + n) > b.(a + n)
=> a/b > a+n/b+n ( đpcm)
Câu này lớp 7
Ta có : a/b > 1
=> a > b > 0
=> a ; b \(\in N\)
Ta có : \(\frac{a}{b}=\frac{a.\left(b+m\right)}{b\left(b+m\right)}=\frac{a.b+a.m}{b^2+b.m}\)
\(\frac{a+m}{b+m}=\frac{\left(a+m\right)b}{\left(b+m\right).b}=\frac{a.b+b.m}{b^2+b.m}\)
Vì a > b => ( a.b + a.m ) > ( a.b + b.m )
=> \(\frac{a.b+a.m}{b^2+b.m}>\frac{a.b+b.m}{b^2+b.m}\)
\(\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Không phải,câu này là toán nâng cao lớp 5 mà.Cô giáo mik in cho cả quyển.
\(\frac{a}{b}-\frac{a+m}{b+m}=\frac{ab+am-ab-bm}{b\left(b+m\right)}=\frac{m\left(a-b\right)}{b\left(b+m\right)}\)
\(\frac{a}{b}>1\Rightarrow a>b>0\)
Nếu \(m>0\)thì \(\frac{m\left(a-b\right)}{b\left(b+m\right)}>0\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\).
Nếu \(m< 0\)thì \(\frac{m\left(a-b\right)}{b\left(b+m\right)}< 0\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\).