Tính:
a) N = 1 + 32 + 34 + 36 + ... + 3100
b) P = 1 + 53 + 56 + 59 + ... + 599
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1) \(9A=3^3+3^5+...+3^{113}\)
\(\Rightarrow8A=9A-A=3^3+3^5+...+3^{113}-3-3^3-...-3^{111}=3^{113}-3\)
\(\Rightarrow A=\dfrac{3^{113}-3}{8}\)
2) \(9B=3^4+3^6+...+3^{202}\)
\(\Rightarrow8B=9B-B=3^4+3^6+...+3^{202}-3^2-3^4-...-3^{200}=3^{202}-3^2=3^{202}-9\)
\(\Rightarrow B=\dfrac{3^{202}-9}{8}\)
3) \(25C=5^3+5^5+...+5^{101}\)
\(\Rightarrow24C=25C-C=5^3+5^5+...+5^{101}-5-5^3-...-5^{99}=5^{101}-5\)
\(\Rightarrow C=\dfrac{5^{101}-5}{24}\)
4) \(25D=5^4+5^6+...+5^{102}\)
\(\Rightarrow24D=25D-D=5^4+5^6+...+5^{102}-5^2-5^4-...-5^{100}=5^{102}-25\)
\(\Rightarrow D=\dfrac{5^{102}-25}{24}\)
Bài 2:
a) Gọi d là UCLN(2n+1,n+1)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\Rightarrow1⋮d\)
Vậy 2n+1 và n+1 là 2 số nguyên tố cùng nhau
\(\Rightarrow\dfrac{2n+1}{n+1}\) là phân số tối giản
b) Gọi d là UCLN(2n+3,3n+4)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\)
\(\Rightarrow\dfrac{2n+3}{3n+4}\) là phân số tối giản
\(A=1+3^2+3^4+...+3^{102}\)
\(9A=3^2+3^4+...+3^{102}+3^{104}\)
\(\Rightarrow9A-A=3^{104}-1\)
\(\Rightarrow8A=3^{104}-1\)
\(\Rightarrow A=\dfrac{3^{104}-1}{8}\)
a:\(A=3^9\cdot3^8\cdot\left(-3^5\right)=-3^{22}\)
b: \(B=5^3+3^5=125+243=368\)
c: \(3C=3^{101}-3^{100}+3^{99}-...-3^2+3\)
\(\Leftrightarrow4C=3^{101}+1\)
hay \(C=\dfrac{3^{101}+1}{4}\)
\(A=1+3^2+3^4+...+3^{98}+3^{100}\)
\(3^2\cdot A=3^2+3^4+3^6+...+3^{100}+3^{102}\)
\(9A-A=\left(3^2+3^4+3^6+...+3^{100}+3^{102}\right)-\left(1+3^2+3^4+...+3^{98}+3^{100}\right)\)
\(8A=3^{102}-1\)
\(\Rightarrow A=\dfrac{3^{102}-1}{8}\)
A = 1 + 32 + 34 + ..... + 398 + 3100
3A = 3. ( 1 + 32 + 34 + ..... + 398 + 3100 )
3A = 3. 1 + 3. 32 + 3. 34 + ..... + 3. 398 + 3. 3100
3A = 32 + 33 + 34 + ..... + 3100 + 3101
3A - A = ( 32 + 33 + 34 + ..... + 3100 + 3101 ) - ( 1 + 32 + 34 + ..... + 398 + 3100 )
2A = 3101 - 1
A = ( 3101 - 1 ) : 2
Lời giải:
$A=1+32+34+....+398+400$
Từ $32$ đến $400$ có số số hạng là:
$(400-32):2+1=185$ (số hạng)
$32+34+....+398+400=(400+32).185:2=39960$
$\Rightarrow A=1+39960=39961$
\(A=2+2^2+...+2^{20}\)
\(2A=2^2+2^3+...+2^{21}\)
\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)
\(A=2^{21}-2\)
___________
\(B=5+5^2+...+5^{50}\)
\(5B=5^2+5^3+...+5^{51}\)
\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)
\(4B=5^{51}-5\)
\(B=\dfrac{5^{51}-5}{4}\)
___________
\(C=1+3+3^2+...+3^{100}\)
\(3C=3+3^2+...+3^{101}\)
\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2C=3^{101}-1\)
\(C=\dfrac{3^{101}-1}{2}\)
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
Tham khảo
Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+31013+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
Vậy A = 3101−12
a) N = 1 + 32+34+36+ ......... + 3100
9N = 32 + 34+36+ ......... + 3100+3102
9N - N = ( 32 + 34+36+ ......... + 3100+3102) - (1 + 32+34+36+ ......... + 3100)
8N = 3102-1
N = \(\frac{3^{102}-1}{8}\)
cậu b tương tự
t ick cho mik nha
a) \(N=1+3^2+3^4+......+3^{100}\)
\(=>3^2N=3^2\left(1+3^2+3^4+.....+3^{100}\right)\)
\(=3^2+3^4+3^6+.....+3^{102}\)
\(=>9N-N=3^{102}-1\)
\(=>8N=3^{102}-1=>N=\frac{3^{102}-1}{8}\)