tính tổng:
\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{9999}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
A= 1/15+1/35+1/63+1/99+ ... + 1/9999
A=1/3.5+1/5.7+1/7.9+ ... +1/99.101
2A=2/3.5+2/5.7+2/7.9+ ... +2/99.101
2A=1/3-1/5+1/5-1/7+1/7-1/9+ ... + 1/99-1/101
2A=1/3-1/101
A=49/303
Sai thì thôi nhé
A= 1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
A=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
A=1-1/7
A=6/7
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+....+\frac{1}{9999}\)
=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{99.101}\)
=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
=\(1-\frac{1}{101}=\frac{100}{101}\)
A=1/3.5+1/5.7+1/7.9+...+1/99.101
2A= 2/3.5+2/5.7+2/7.9+...+2/99.101
2A= 1/3-1/5+1/5-1/7-1/7+1/7-1/9+...+1/99-1/101
2A=1/3-1/101=98/303
A=(98/303)/2=49/303
\(A=1/3.5+1/5.7+1/7.9+…+1/99.101\)
A.2=2/3.5+2/5.7+2/7.9+…+2/99.101
A.2=1/3-1/5+1/5-1/7+1/7-1/9+...+1/99-1/101
Vậy
A.2=1/3-1/101=98/303
A=98/303/2=49/303
Đúng không
A = 1/15 + 1/35 + 1/63 + 1/99 + ... + 1/9999
= 1/3x5 + 1/5x7 + 1/7x9 + 1/9x11 + ... + 1/99x101
A x 2 = 2/3x5 + 2/5x7 + 2/7x9 + 2/9x11 + ... + 2/99x101
= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + ... + 1/99 - 1/101
= 1/3 - 1/101 = 98/303
Vậy A = 98/303 : 2 = 49/303
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\frac{98}{303}\)
\(A=\frac{49}{303}\)
A= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
2A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
2A=\(\frac{1}{3}-\frac{1}{101}\)
2A=\(\frac{98}{303}\)
A=\(\frac{98}{303}.\frac{1}{2}\)
A=\(\frac{49}{303}\)
Chúc bạn học tốt!
2S=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)
=\(1-\frac{1}{15}=\frac{14}{15}\)
\(\Rightarrow S=\frac{7}{15}\)
a. Ta có:A= 1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15
A=1/2(1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15)
A=1/2(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15)
A=2(1-1/15)
A=1/2.14/15
A=7/15
\(M=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right).....\left(\frac{1}{100}-1\right)\left(\frac{1}{121}-1\right)=\frac{-3}{4}.\frac{-8}{9}.....\frac{-99}{100}.\frac{-120}{121}\)
\(M=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.....\frac{-9.11}{10.10}.\frac{-10.12}{11.11}=\frac{-1}{2}.\frac{-12}{11}=\frac{12}{22}=\frac{6}{11}\)
\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{99}\)
\(S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{9.11}\right)\)
\(S=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(S=\frac{5}{11}\)
\(Q=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2013.2015}\)
\(Q=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(Q=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(Q=\frac{1}{2}\left(1-\frac{1}{2015}\right)\)
\(Q=\frac{1007}{2015}\)
~ Đấng Ed :) ~
\(\Rightarrow A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{99.101}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{88}{303}\)
\(\Rightarrow A=\frac{44}{303}\)
\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)
\(\Rightarrow2A=\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{99\times101}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)
=> A = 98/203 : 2 = 49/303
\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{9999}\)
\(=\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{99\times101}\)
\(=\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\right)\div2\)
\(=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\div2\)
\(=\left(1-\frac{1}{101}\right)\div2\)
\(=\frac{100}{101}\div2\)
\(=\frac{50}{101}\)
Vậy \(S=\frac{50}{101}\)
cảm ơn bạn Original Kingdom