K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2016

a) x-1 >0 => x >1

    x-1/2 >0 => x > 1/2

th2; x-1<0 => x <1

       x-1/2<0 => x <1/2

b) tuong tu

21 tháng 7 2016

a/ Áp dụng tính chất phân phối ta được:

\(\left(x+1\right)\left(x+2\right)\)

\(=x^2+x+2x+2\)

\(=x^2+2x+1^2+x+1\)

\(=\left(x+1\right)^2+x+1\)

Mà \(x< \left(x+1\right)^2\)

\(\Rightarrow\left(x+1\right)^2+x+1>0\)

=> Biểu thức trên lớn hơn 0

=> Không có kết quả (Sai đề)

b/ Áp dụng tính chất phân phối ta được:

\(\left(x-2\right)\left(x+\frac{2}{3}\right)\)

\(=x^2-2x+\frac{2}{3}x-\frac{4}{3}\)

\(=x^2-2x+1+\frac{2}{3}x-\frac{1}{3}\)

\(=\left(x-1\right)^2+\frac{2}{3}x-\frac{1}{3}\)

\(=\left(x-1\right)^2+\frac{1}{3}\left(2x-1\right)\)

Mà \(\left(x-1\right)^2\ge0\)

=> Để thỏa mãn đề bài cần \(\frac{1}{3}\left(2x-1\right)>0\)

 

=> \(2x>1\Rightarrow x>\frac{1}{2}\)

21 tháng 7 2016

a ) \(\left(x+1\right).\left(x+2\right)< 0\)

\(=x.\left(x+2\right)+1.\left(x+2\right)< 0\)

\(=x.\left(x-2\right)+\left(x+2\right)< 0\)

\(\Rightarrow x\in Z\)

\(\Rightarrow x>2\)

 

16 tháng 9 2018

a) (x-1).(x+2) < 0 

TH1: x - 1< 0

x < 1

TH2: x + 2 < 0

x < -2

b) ( x +3).(x-5) > 0

TH1: x + 3 > 0

x> -3

TH2: x - 5 > 0

x > 5

KL: x > 5

6 tháng 1 2017

a) \(x^2+1>0\)  thực tế lớn 1 không cần vì đang so sánh Với 0

=> để VT <0 cần (x-3)<0=> x<3 {âm nhân dương--> âm)

b) Lập bảng hợp lý nhất cho lớp 6

x-VC-7 4+VC
x+7-0+++
x-4---0+
(x+7)(x-4)+0-0+

b) vậy x<-7 hoạc x>4 thì VT>0

c) x^2+5> 0 mọi x

=> chỉ xét x^2-16 =(x-4)(x+4)

lập bảng như (b)=> x<-4 hoac x>4

25 tháng 9 2017

a) (x-3).(x+2)=0

=>x - 3 = 0 hoặc x + 2 = 0

=>x = 3 hoặc x = -2.

25 tháng 9 2017

a) \(\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

vay \(\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

b) \(\left(x+1\right).x< 0\)

\(\Rightarrow\orbr{\begin{cases}x< 0\\x+1< 0\end{cases}}\Rightarrow\orbr{\begin{cases}x< 0\\x< -1\end{cases}}\)

vay \(\orbr{\begin{cases}x< 0\\x< -1\end{cases}}\)