c1:z3-2y2-4x
tại x=3,y=1,z-3 là ..........
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = 4, y = -1, z = -1 vào biểu thức ta có:
4 – 2.(-1)2 + (-1)3 = 4 – 2.1 + (-1) = 4 - 2 – 1= 1
Vậy giá trị của biểu thức x – 2y2 + z3 tại x = 4, y = -1, z = -1 là 1.
Đoạn:
2x
2 + 2y
2 − 3z
2= -100 là như thế nào bạn nhỉ?
Bạn viết lại đề để mọi người hiểu hơn nhé.
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Mà \(x^2-2y^2+z^2=44\)
\(\Rightarrow\left(2k\right)^2+2\left(3k\right)^2+\left(5k\right)^2=44\)
\(\Leftrightarrow4k^2-18k^2+25k^2=44\)
\(\Leftrightarrow k^2\left(4-18+25\right)=44\)
\(\Leftrightarrow k^2.11=44\)
\(\Leftrightarrow k^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
+) Với \(k=2\)thì \(\hept{\begin{cases}x=2k=4\\y=3k=6\\z=5k=10\end{cases}}\)
+) Với \(k=-2\)thì \(\hept{\begin{cases}x=2k=-4\\y=3k=-6\\z=5k=-10\end{cases}}\)
Vậy ...
Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)
Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Chứng minh tương tự:
\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)
Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Bạn tham khảo nhé
https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737
Bài 1:
a. \(=[(3x+(4y-5z)][3x-(4y-5z)]=(3x)^2-(4y-5z)^2\)
\(=9x^2-(16y^2-40yz+25z^2)=9x^2-16y^2+40yz-25z^2\)
b.
\(=(3a-1)^2+2(3a-1)(3a+1)+(3a+1)^2=[(3a-1)+(3a+1)]^2=(6a)^2=36a^2\)
Bài 2:
\((x+y+z)^3=[(x+y)+z]^3=(x+y)^3+3(x+y)^2z+3(x+y)z^2+z^3\)
\(=[x^3+y^3+3xy(x+y)]+3(x+y)z(x+y+z)+z^3\)
\(=x^3+y^3+z^3+3xy(x+y)+3(x+y)z(x+y+z)\)
\(=x^3+y^3+z^3+3(x+y)(xy+zx+zy+z^2)\)
\(=x^3+y^3+z^3+3(x+y)(z+x)(z+y)\) (đpcm)
Sửa đề: \(P=x^{2008}+y^{2009}+z^{2010}\)
Ta có: x+y+z=1
nên \(\left(x+y+z\right)^3=1\)
\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)=1\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)+1=1\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
mà 3>0
nên \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)
Thay x=-y vào biểu thức \(x+y+z=1\), ta được:
\(-y+y+z=1\)
hay z=1
Thay x=-y và z=1 vào biểu thức \(x^2+y^2+z^2=1\), ta được:
\(\left(-y\right)^2+y^2+1=1\)
\(\Leftrightarrow y^2+y^2=0\)
\(\Leftrightarrow2y^2=0\)
hay y=0
Vì x=-y
và y=0
nên x=0
Thay x=0; y=0 và z=1 vào biểu thức \(P=x^{2008}+y^{2009}+z^{2010}\), ta được:
\(P=0^{2008}+0^{2009}+1^{2010}=1\)
Vậy: P=1
nma ở trên cm y=-z mà. Nếu ở thay y=0 và z=1 vào thì nghĩa là 0 = -1 hả
bằng12345
Tại x = 3 . y = 1 . z = 3
\(z^3-2y^{2-4x}=3^3-2.1^{2-4.3}=27-2.1^{-10}\)
\(=27-2=25\)