K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-2x-35\)

\(=x^2-2x+1-36\)

\(=\left(x-1\right)^2-36\)

\(=\left(x-1\right)^2-6^2\)

\(=\left(x-1-6\right)\left(x-1+6\right)\)

\(=\left(x-7\right)\left(x+5\right)\)

Ủng hộ mik nha

Thanks @@@@@@

P
Phong
CTVHS
16 tháng 8 2023

\(x^4-x^2+2x+2\)

\(=x^4-2x^3+2x^2+2x^3-4x^2+4x+x^2-2x+2\)

\(=\left(x^4-2x^3+2x^2\right)+\left(2x^3-4x^2+4x\right)+\left(x^2-2x+2\right)\)

\(=x^2\left(x^2-2x+2\right)+2x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+1\right)\)

\(=\left(x^2-2x+2\right)\left(x+1\right)^2\)

16 tháng 8 2023

\(x^4-x^2+2x+2\)

\(=x^2\left(x^2-1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)

\(=\left(x+1\right)\left(x^3-x^2+2\right)\)

NV
5 tháng 11 2021

Đa thức này ko phân tích thành nhân tử được

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2x\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+2x\right)\)

31 tháng 7 2021

\(x-\sqrt{x}-2\\ =x+\sqrt{x}-2\sqrt{x}-2\\ =\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)\\ =\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)

16 tháng 11 2021

(x+5)2

16 tháng 11 2021

\(x^2+10x+25=\left(x+5\right)^2\)

6 tháng 11 2021

\(x^2+7x+12=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)

\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)

Sửa đề: \(x^2+5xy+2xy+10y^2\)

=x(x+5y)+2y(x+5y)

=(x+5y)(x+2y)

Sửa đề: \(x^2+3xy+2xy+6y^2\)

\(=\left(x^2+3xy\right)+\left(2xy+6y^2\right)\)

=x(x+3y)+2y(x+3y)

=(x+3y)(x+2y)

QT
Quoc Tran Anh Le
Giáo viên
30 tháng 8

22 tháng 3 2016

\(=x^2+2x\cdot\frac{1}{2}+\frac{1}{4}-\left(\frac{\sqrt{23}}{2}i\right)^2\)

\(=\left(x+\frac{1}{2}\right)^2\)\(-\left(\frac{\sqrt{23}}{2}i\right)^2\)

\(\left(x+\frac{1}{2}-\frac{\sqrt{23}}{2}i\right)\left(x+\frac{1}{2}+\frac{\sqrt[]{23}}{2}i\right)\)