Cho \(\Delta ABC\) có 3 góc nhọn, \(AD\) là phân giác của góc \(A\).
C/m: \(AD^2\) < AB.AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên cùng một nửa mặt phẳng bờ \(BC\)không chứa \(A\)lấy tia \(Cx\)sao cho \(\widehat{BAD}=\widehat{BCx}\).
Kéo dài \(AD\)cắt \(Cx\)tại \(E\).
Xét \(\Delta DAB\)và \(\Delta DCE\)có:
\(\widehat{ADB}=\widehat{CDE}\)(vì đối đỉnh).
\(\widehat{BAD}=\widehat{BCE}\)(hình vẽ trên).
\(\Rightarrow\Delta DAB~\Delta DCE\left(g.g\right)\).
\(\Rightarrow\widehat{ABD}=\widehat{CED}\)(2 góc tương ứng).
\(\Rightarrow\widehat{ABD}=\widehat{CEA}\)
Và \(\frac{AD}{CD}=\frac{DB}{DE}\)(tỉ số đồng dạng).
\(\Rightarrow AD.DE=BD.CD\)\(\left(1\right)\).
Xét \(\Delta BAD\)và \(\Delta EAC\)có:
\(\widehat{BAD}=\widehat{EAC}\)(giả thiết).
\(\widehat{ABD}=\widehat{AEC}\)(chứng minh trên).
\(\Rightarrow\Delta BAD~\Delta EAC\left(g.g\right)\).
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{AE}\)(tỉ số đồng dạng).
\(\Rightarrow AD.AE=AB.AC\)\(\left(2\right)\).
Từ \(\left(1\right)\)và \(\left(2\right)\).
\(\Rightarrow AD.AE-AD.DE=AB.AC-BD.CD\).
\(\Rightarrow AD\left(AE-DE\right)=AB.AC-BD.CD\).
\(\Rightarrow AD.AD=AB.AC-BD.CD\).
\(\Rightarrow AD^2=AB.AC-BD.CD\)(điều phải chứng minh).
B H C A d b A B D C E
1.Vẽ AH \(\perp\)BC;H\(\in\)BC
+, Xét D nằm trên đoạn thẳng HC
\(\Delta HAB\)có \(\widehat{H}\)= 900 Theo định lý Pytago ta có:
\(AH^2+BH^2=AB^2\Rightarrow AH^2=c^2-BH^2\)
\(\Delta HAD\)có \(\widehat{H}\)=900,theo định lý Pytago tacó:
\(AH^2+DH^2=AD^2\Rightarrow AH^2=d^2-DH^2\)
Do đó \(d^2-DH^2=c^2-BH^2\Rightarrow d^2=c^2+DH^2-BH^2\)
\(\Rightarrow d^2=c^2+BD\left(DH-BH\right)\Rightarrow d^2n=c^2n+mn\left(DH-BH\right)\)
Chứng minh tương tự ta có:
\(d^2m=b^2m+mn\left(-DH-CH\right)\)
Ta có: \(d^2m+b^2m+c^2n+mn\left(-DH-CH+DH-BH\right)\)
\(d^2\left(m+n\right)=b^2m+c^2n+mn\left(-CH-BH\right)\)
\(d^2a=b^2m+c^2n-amn\)
+, Xét D nằm trên đoạn thẳng HB
Chứng minh tương tự trên ta cũng có \(d^2a=b^2m+c^2n-amn\)
2.\(\widehat{ADC}>\widehat{ABC}\) (ADC là góc ngoài của tam giác ABD)
Do đó vẽ E trên cạnh AC sao cho góc ADE =góc ABC
ta có AE<AC
XÉT tam giác ABD và tam gác ADE có : góc BAD = góc DAE(AD phân giác)
góc ABD=góc ADE
do đó \(\Delta ABD\infty\Delta ADE\Rightarrow\frac{AD}{AE}=\frac{AB}{AD}\Rightarrow AD^2=AB.AE\)
do đó \(AD^2< AB.AC\)
c/m AD^2 < AB.AC