Chứng minh B = 1/2^2+1/3^2+1/4^2+...+1/100^2 < 3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1

A = 1/2² + 1/3² + 1/4² + 1/5² + ... + 1/100²
=> A < 1/2.3 + 1/3.4+ 1/4.5 + 1/5.6 + ... + 1/100.101
<=> A < 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/100 - 1/101
<=> A < 1/2 - 1/101
<=> A < 99/202 < 150/202 < 151,5/202
<=> A < 3/4 (đpcm)

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

\(a.A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(2A-A=1-\frac{1}{2^{99}}\)
\(A=1-\frac{1}{2^{99}}< 1\)
\(b.B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{203}{3^{100}}< 3\)
\(A< \frac{3}{4}\)
Ủng hộ mk nha ^_^

\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B
\(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}<\frac{1}{3}+\frac{1}{8}+\frac{1}{15}+...+\frac{1}{9999}\)
ta có: \(\frac{1}{3}+\frac{1}{8}+\frac{1}{15}+...+\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{99.101}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+..+\frac{1}{101}\right)\right)=\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)<\frac{1}{2}.\left(1+\frac{1}{2}\right)=\frac{3}{4}\)
=> B< 3/4
A = 1/2² + 1/3² + 1/4² + 1/5² + ... + 1/100²
=> A < 1/2.3 + 1/3.4+ 1/4.5 + 1/5.6 + ... + 1/100.101
<=> A < 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/100 - 1/101
<=> A < 1/2 - 1/101
<=> A < 99/202 < 150/202 < 151,5/202
<=> A < 3/4 (đpcm)