GPT: 5(x-2)-(x-3)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự phân tích đa thức thành nhân tử nhé!
\(1.\)
\(2x^3+x+3=0\)
\(\Leftrightarrow\) \(\left(x+1\right)\left(2x^2-2x+3\right)=0\) \(\left(1\right)\)
Vì \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\) với mọi \(x\in R\)
nên từ \(\left(1\right)\) \(\Rightarrow\) \(x+1=0\) \(\Leftrightarrow\) \(x=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ĐK:-5\le x\le3\)
Đặt \(\sqrt{x+5}+\sqrt{3-x}=t\ge0\Leftrightarrow t^2-8=2\sqrt{15-2x-x^2}\), PTTT:
\(t-t^2+8-2=0\\ \Leftrightarrow t^2-t-6=0\\ \Leftrightarrow t=3\left(t\ge0\right)\\ \Leftrightarrow2\sqrt{15-2x-x^2}=3^2-8=1\\ \Leftrightarrow60-8x-4x^2=1\\ \Leftrightarrow4x^2+8x-59=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+3\sqrt{7}}{2}\left(tm\right)\\x=\dfrac{-2-3\sqrt{7}}{2}\left(tm\right)\end{matrix}\right.\)
Vậy nghiệm pt là ...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2\left(x^2+2\right)=5\sqrt{x^3+1}\left(đk:x\ge-1\right)\)
\(\Leftrightarrow2\left[\left(x^2-x+1\right)+\left(x+1\right)\right]=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)
Đặt \(\hept{\begin{cases}\sqrt{x^2+1}=a\left(a\ge0\right)\\\sqrt{x^2-x+1}=b\left(b>0\right)\end{cases}}\)
Tìm được \(\orbr{\begin{cases}a=2b\\b=2a\end{cases}}\)
TH1: a=2b => phương trình vô nghiệm
TH2: b=2a ta được \(x_1=\frac{5+\sqrt{37}}{2};x_2=\frac{5-\sqrt{37}}{2}\left(tmđk\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ ĐKXĐ:...
\(\Leftrightarrow\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-2\sqrt{x+1}+1}=\frac{x+5}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(1-\sqrt{x+1}\right)^2}=\frac{x+5}{2}\)
\(\Leftrightarrow\sqrt{x+1}+1+\left|1-\sqrt{x+1}\right|=\frac{x+5}{2}\)
Nếu \(0\ge x\ge-1\Rightarrow\left|1-\sqrt{x+1}\right|=1-\sqrt{x+1}\)
\(\Rightarrow2=\frac{x+5}{2}\Leftrightarrow x=-1\left(tm\right)\)
Nếu \(x>0\Rightarrow\left|1-\sqrt{x+1}\right|=\sqrt{x+1}-1\)
\(\Rightarrow2\sqrt{x+1}=\frac{x+5}{2}\Leftrightarrow16x+16=x^2+10x+25\)
\(\Leftrightarrow x^2-6x+9=0\Leftrightarrow x=3\left(tm\right)\)
Vậy...
Câu dưới tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow x(\sqrt{x+1}-2)+(x+5)(\sqrt{x+6}-3)=x^2-9\)
\(\Leftrightarrow x.\frac{x-3}{\sqrt{x+1}+2}+(x+5).\frac{x-3}{\sqrt{x+6}+3}-(x-3)(x+3)=0\)
\(\Leftrightarrow (x-3)\left[\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\right]=0\)
Ta sẽ cm pt chỉ có nghiệm $x=3$ bằng cách chỉ ra biểu thức trong ngoặc vuông luôn âm.
Nếu $-1\leq x< 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{3}-(x+3)=\frac{-2(x+4)}{3}< 0\)
Nếu $x\geq 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\leq \frac{x}{2}+\frac{x+5}{3}-(x+3)=\frac{-(x+8)}{6}<0\)
Vậy........
![](https://rs.olm.vn/images/avt/0.png?1311)
5(x - 2) - (x - 3) = 1
=> 5(x - 2) - x + 3 = 1
=> 5(x - 2) - x + 2 + 1 = 1
=> 5(x - 2) - (x - 2) = 0
=> (x - 2)(5 - 1) = 0
=> (x - 2).4 = 0
=. x - 2 = 0
=> x = 2
5(x-2)-(x-3)=1
5x-10-(x-3)=1
5x-10-1=x-3
5x-11=x-3
5x-x=-3+11
4x=8
x=8/4
x=2. Vậy x=2
không biết giải vậy đúng chưa
Chúc bạn học tốt!^_^