cho tam giác ABC có AB=AC = 5cm ; BC= 8cm, kẻ AH vuông góc với BC (H\(\in\) BC)
a, CM : HB=HC và gócBAH=góc CAH
b, Tính đọ dài đoạn AH
c, Kẻ HD vuông góc với AB (D\(\in\)AB ), HEvuông góc với AC( E\(\in\)AC). cmr HDElà tam giác cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình
a)ta có AB/CB=2/3;BC/BI=BC/AB+AI=2/3
Xét tam giác ABC và tam giác CBI:
AB/CB=BC/BI(=2/3)
góc ABC chung
suy ra:tam giác ABC~tam giác CBI
b)có lẽ sai đề.Xem kĩ lại nhé
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
Xét tam giác ABC : \(AB^2+AC^2=3^2+4^2=5^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^o\)
\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\\
\Rightarrow\widehat{B}=53^o8'\)
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \Rightarrow\widehat{C}=36^o52'\)
Vì cạnh AC = BC = 5cm nên ∠B = ∠A và cùng là góc lớn nhất. Chọn D
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔAHC vuông tại H có \(\widehat{C}=45^0\)
nên ΔAHC vuông cân tại H
=>\(AH=HC=\dfrac{BC}{2}=\dfrac{5}{2}\sqrt{2}\left(cm\right)\)
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
1, Xét tam giác ABC cân tại A
Vì AH là đường cao
nên AH đồng thời là đường trung tuyến, là đường phân giác tam giác ABC
=> HB = HC và ^BAH = ^CAH
2, Vì H là trung điểm
=> BH = BC/2 = 4 cm
Theo định lí Pytago tam giác AHB vuông tại H
\(AH=\sqrt{AB^2-BH^2}=3cm\)
3, Xét tam giác ADH và tam giác AEH có
^DAH = ^EAH (cmt)
AH _ chung
Vậy tam giác ADH = tam giác AEH (ch-gn)
=> DH = HE ( 2 cạnh tương ứng )
=> AD = AE ( 2 cạnh tương ứng )
Xét tam giác HDE có DH = HE
nên tam giác HDE cân tại H