Chứng minh:
A= 5+ 52+ 53 +...+ 530 chia hết cho 30, 31
Nhanh giúp mình nha thứ 7 mình nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì 20 chia hết cho 12 , 36 chia hết cho 12 nên 120a+36b chia hết cho 12
Vì abcabc = 1001 x abc
Mà 1001 lại chia hết cho 11
=> abcabc chia hết cho 11
Hội con 🐄 chúc bạn học tốt!!!
a, C = 5 + 51 + 52 + 53 + ... + 520
C= 5 ( 1 + 5 + 52 + ...+ 519 )
=> C chia hết cho 5
b, C = 5 + 51 + 52 + 53 + ... + 520
C= ( 5+52) + ( 53 + 54 ) + ...+ ( 519 + 520)
C= 5(1+5) + 53 (1+5) + 55 (1+5) + ...+ 519(1+5)
C= 5.6 + 53.6 + 55.6 + ...+ 519 . 6
=> C chia hết cho 6
CMR : C = 5 + 52+ 53 + ... + 520 \(⋮\)5 và 6
Chia hết cho 5
Vì trong 1 tổng có 1 số chia hết cho m thì cả tổng đó chia hết cho m => C \(⋮\)5
Chia hết cho 6
C = 5 + 52+ 53 + ... + 520
C = ( 5 + 25 ) + ( 53 + 54) + ... + ( 519+ 520 )
C = 30 . ( 53 .1 + 53 . 5 ) + ... + ( 519 . 1 + 519 . 5 )
C = 30 + 53 . ( 5 + 52 ) + ... +519. ( 5 + 52 )
C = 30 . 1 + 30 . 53 +...+ 519 . 30 \(⋮\)30
Vậy C \(⋮\)5 và 6
Học tốt!!!
Ta có: 5+5\(^2\)+5\(^3\)+5\(^4\)+....+5\(^{60}\)= (5+5\(^2\))+(5\(^3\)+5\(^4\) ) +....+( 5\(^{59}\)+5\(^{60}\))=
= 30+ 5^2.(5+5^2)+...+5^58.(5+5^2)= 30+5^2.30+...+5^58.30= 30.(1+5^2+...+5^58)
Vì 30 \(⋮\)6 \(\Rightarrow\)30.(1+5^2+...+5^58) \(⋮\)6 hay 5+5\(^2\)+5\(^3\)+5\(^4\)+....+5\(^{60}\)\(⋮\)6
5+5\(^2\)+5\(^3\)+5\(^4\)+....+5\(^{60}\)= (5+5\(^2\)+5\(^3\) ) +(5\(^4\) + 5^5+5^6) +....+( 5^58+5\(^{59}\)+5\(^{60}\))=
= 155+ 5^3.(5+5^2+5^3)+...+5^57.(5+5^2+5^3)= 155+5^3.155+...+5^57.155=155.(1+5^3+...+5^57)
Vì 155 \(⋮\) 31 \(\Rightarrow\) 155.(1+5^3+...+5^57) \(⋮\) 31 hay 5+5\(^2\)+5\(^3\)+5\(^4\)+....+5\(^{60}\)\(⋮\) 31
Bạn vào chỗ câu hỏi của bạn Trương NGuyễn Ngọc Mỹ, giải tương tự giống bài của mình nhé
dễ thôi mà , mk hướng dẫn nhé :
a) S= 5^198+5^199+5^200
= (5^198+5^2)+( 5^198+5^1)+5^200
= 5^198.31
=> S chia hết cho 31
bài này thế đó
nhớ t nha
S=5198+5199+5200
S= 5198 ( 1 + 5 +25 )
S = 5198 . 31 chia hết cho 31
Vậy S chia hết cho 31.
\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)
Ta thấy 30 = 5 x 6
Vì A là tổng các lũy thừa của 5 nên chia hết cho 5
Ta có: A = ( 5 + 52 ) + ( 53 + 54 ) +......+ ( 529 + 530 )
= 5.(1 + 5) + 53 . ( 1 + 5) + ..... +529 . ( 1 + 5)
= 5 . 6 + 53 . 6+ ..... + 529 . 6
= (5 + 53 + .... + 529 ) . 6 chia hết cho 6
Vậy A chia hết cho 30
Ta có: A = (5 + 52 + 53) + ( 54 + 55 + 56 ) + ..... + ( 528 + 529 + 530 )
= 5.(1 + 5 + 25) + 54 . ( 1 + 5 + 25) + ..... + 528 . (1 + 5 + 25)
= 5. 31 + 54 .31 + ..... + 528 .31
= ( 5 + 54 + ..... + 528 ) . 31 chia hết cho 31
mik ngại viết lắm xin lỗi
Câu hỏi của Phạm Quang Huy - Toán lớp 6 - Học toán với OnlineMath