Cho \(x>0\). Chứng minh rằng
\(x+\dfrac{2}{2x+1}\ge\dfrac{3}{2}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^2-xy+y^2\) (do x+y=1)
\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)
Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)
Vậy \(x^3+y^3\ge\dfrac{1}{4}\)
2.
a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
b) Lần trước mk giải rồi nhá
3.
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)
b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)
\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)
1/ Đây là cách chứng minh dựa vào kiến thức lớp 9, không sử dụng các định lý hàm sin hoặc hàm cos của cấp 3:
Bạn tự vẽ hình.
Kẻ tam giác ABC với đường cao AH, ta đặt
\(BC=a;AC=b;AB=c;AH=h_a;BH=x\Rightarrow CH=a-x\)
Trong tam giác vuông ABH: \(AB^2=BH^2+AH^2\Rightarrow c^2=x^2+h^2_a\) (1)
Trong tam giác vuông ACH: \(AC^2=CH^2+AH^2\Rightarrow b^2=\left(a-x\right)^2+h^2_a\) (2)
Trừ vế với vế của (1) cho (2) ta được:
\(c^2-b^2=x^2-\left(a-x\right)^2=2ax-a^2\Rightarrow x=\dfrac{a^2-b^2+c^2}{2a}\)
Thay x vào (1) ta được:
\(h^2_a=c^2-x^2=c^2-\left(\dfrac{a^2-b^2+c^2}{2a}\right)^2=\left(c-\dfrac{a^2-b^2+c^2}{2a}\right)\left(c+\dfrac{a^2-b^2+c^2}{2a}\right)\)
\(\Rightarrow h_a^2=\dfrac{\left(b^2-\left(a^2-2ac+c^2\right)\right)\left(a^2+2ac+c^2-b^2\right)}{4a^2}\)
\(\Rightarrow h_a^2=\dfrac{\left(b^2-\left(a-c\right)^2\right)\left(\left(a+c\right)^2-b^2\right)}{4a^2}\)
\(\Rightarrow h_a^2=\dfrac{\left(b+c-a\right)\left(a+b-c\right)\left(a+b+c\right)\left(a-b+c\right)}{4a^2}\) (3)
Gọi \(p=\dfrac{a+b+c}{2}\) là nửa chu vi tam giác
\(\Rightarrow a+b+c=2p\) ; \(a+b-c=2\left(p-c\right)\) ; \(b+c-a=2\left(p-a\right)\) ; \(a-b+c=2\left(p-b\right)\)
Thay vào (3) ta được:
\(h_a^2=\dfrac{2\left(p-a\right)2\left(p-c\right)2p.2\left(p-b\right)}{4a^2}=\dfrac{4p\left(p-a\right)\left(p-b\right)\left(p-c\right)}{a^2}\)
\(\Rightarrow h_a=\dfrac{2\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}{a}\)
Mà ta đã biết công thức tính diện tích tam giác:
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}h_a.a\)
\(\Rightarrow S=\dfrac{1}{2}\dfrac{2\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}{a}.a=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
Bài 2:
Áp dụng đẳng thức : \(a^2+b^2\ge2ab\) (xảy ra đẳng thức khi a = b),ta có :
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}\ge2.\dfrac{x}{y}.\dfrac{y}{z}=\dfrac{2x}{z}\)
Tương tự : \(\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{2y}{z}\), \(\dfrac{z^2}{x^2}+\dfrac{x^2}{y^2}\ge\dfrac{2z}{y}\)
Cộng từng vế 3 BĐT trên ta được :
\(2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\right)\ge2\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\Rightarrow\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\left(\text{đpcm}\right)\)
\(VT=\dfrac{x^2}{x^2+2xy+3zx}+\dfrac{y^2}{y^2+2yz+3xy}+\dfrac{z^2}{z^2+2zx+3yz}\)
\(VT\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+5xy+5yz+5zx}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+zx\right)}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(x+y+z\right)^2}=\dfrac{1}{2}\)
Áp dụng AM-GM có
\(\dfrac{x^3}{y^2}+y+y\ge3\sqrt[3]{\dfrac{x^3}{y^2}.y.y}=3x\)
Tương tự . \(\dfrac{y^3}{z^2}+z+z\ge3y\); \(\dfrac{z^3}{x^2}+x+x\ge3z\)
cộng lại ta được
\(VT+2\left(x+y+z\right)\ge3\left(x+y+z\right)\rightarrow VT\ge x+y+z=VP\)
Vậy ta có điều phải chứng minh
Dấu "=" \(\Leftrightarrow x=y=z\)
Áp dụng bất đẳng thức AM-GM:
\(\dfrac{x^3}{x^2+y^2}=\dfrac{x\left(x^2+y^2\right)-xy^2}{x^2+y^2}=x-\dfrac{xy^2}{x^2+y^2}\ge x-\dfrac{xy^2}{2xy}=x-\dfrac{y}{2}\)
2a)
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2a+b+c}=\dfrac{1}{a+b+a+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{1}{a+2b+c}=\dfrac{1}{a+b+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{1}{a+b+2c}=\dfrac{1}{a+c+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{1}{4}\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)+\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)
\(\Rightarrow VT\le\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)
Chứng minh rằng \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\\\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )
Vì \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Mà \(VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)
\(\Rightarrow\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)( đpcm )
Dấu " = " xảy ra khi \(a=b=c\)
2b)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}1+a^2\ge2\sqrt{a^2}=2a\\1+b^2\ge2\sqrt{b^2}=2b\\1+c^2\ge2\sqrt{c^2}=2c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{1+a^2}\le\dfrac{a}{2a}=\dfrac{1}{2}\\\dfrac{b}{1+b^2}\le\dfrac{b}{2b}=\dfrac{1}{2}\\\dfrac{c}{1+c^2}\le\dfrac{c}{2c}=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
Bài 1)
Nháp : nhìn nhanh ta thấy nên áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Giải
Vì x,y > 0 =) 2x + y > 0 , x + 2y > 0
Áp dụng BĐT cauchy dạng phân thức cho hai bộ số không âm \(\dfrac{1}{2x+y}\)và\(\dfrac{1}{x+2y}\)
\(\Rightarrow\dfrac{1}{x+2y}+\dfrac{1}{2x+y}\ge\dfrac{4}{x+2y+2x+y}=\dfrac{4}{3\left(x+y\right)}\)
\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3\left(x+y\right)}=4\)
Dấu '' = "xảy ra khi và chỉ khi x + 2y = y + 2x (=) x=y
Bài 3:
Áp dụng bất đẳng thức AM - GM có:
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}\)
\(=2+2+2=6\)
Dấu " = " khi x = y = z = 1
Vậy...
3. Với x,y,z>0 áp dụng BĐT Cauchy ta có
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
\(=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\)
\(\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}=2+2+2=6\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow x=y=z=1\)
1. Với a=b=c=0, ta thấy BĐT trên đúng
Với a,b,c>0 áp dụng BĐT Cauchy cho 3 số dương
\(a^3+a^3+b^3\ge3\sqrt[3]{a^3.a^3.b^3}=3\sqrt[3]{a^6b^3}=3a^2b\) (1)
\(b^3+b^3+c^3\ge3\sqrt[3]{b^3.b^3.c^3}=3\sqrt[3]{b^6c^3}=3b^2c\) (2)
\(c^3+c^3+a^3\ge3\sqrt[3]{c^3.c^3.a^3}=3\sqrt[3]{c^6a^3}=3c^2a\) (3)
Cộng (1), (2), (3) vế theo vế:
\(a^3+b^3+c^3\ge a^2b+b^2c+c^2a>\dfrac{a^2b+b^2c+c^2a}{3}\) (vì a,b,c>0)
Do đó BĐT trên đúng \(\forall a,b,c\ge0\)
\(VT=\dfrac{3}{xy+yz+xz}+\dfrac{2}{x^2+y^2+z^2}\)
\(=\dfrac{8}{4\left(xy+yz+xz\right)}+\dfrac{4}{4\left(xy+yz+xz\right)}+\dfrac{4}{2\left(x^2+y^2+z^2\right)}\)
\(\ge\dfrac{8}{4\cdot\dfrac{\left(x+y+z\right)^2}{3}}+\dfrac{\left(2+2\right)^2}{2\left(x+y+z\right)^2}\)
\(=\dfrac{8}{4\cdot\dfrac{1^2}{3}}+\dfrac{\left(2+2\right)^2}{2\cdot1^2}=14\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Đặt 2x+1=t2x+1=t thì t>0t>0 và x=-\dfrac{1}{2}+\dfrac{t}{2}x=−21+2t do đó áp dụng bất đẳng thức Cô si ta có
x+\dfrac{2}{2x+1}=-\dfrac{1}{2}+\dfrac{t}{2}+\dfrac{2}{t}\ge-\dfrac{1}{2}+2=\dfrac{3}{2}x+2x+12=−21+2t+t2≥−21+2=23.
Đẳng thức xảy ra khi và chỉ khi \dfrac{t}{2}=\dfrac{2}{t}=1\Leftrightarrow t=2\Leftrightarrow x=-\dfrac{1}{2}+\dfrac{2}{2}=\dfrac{1}{2}2t=t2=1⇔t=2⇔x=−21+22=21.
t/2=2/t
t=2
x=-1/2+1=1/2