Giải hệ phương trình : 2x-y=1 và 3x+y=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(-2x^2+x+1-2\sqrt[]{x^2+x+1}=0\)
\(\Leftrightarrow2\sqrt[]{x^2+x+1}=-2x^2+x+1\left(1\right)\)
Ta có :
\(2\sqrt[]{x^2+x+1}=2\sqrt[]{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\sqrt[]{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow-2x^2+x+1=\sqrt[]{3}\)
\(\Leftrightarrow2x^2-x+\sqrt[]{3}-1=0\)
\(\Delta=1-8\left(\sqrt[]{3}-1\right)=9-8\sqrt[]{3}\)
\(pt\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\\x=\dfrac{1-\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\end{matrix}\right.\) \(\left(vì.x=-\dfrac{1}{2}\right)\)
Vậy phương trình cho vô nghiệm
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
DK:\(y\ne0\)
PT (1) :\(3x^2+2y^2-4xy=11-\dfrac{1}{y}\left(2x+\dfrac{1}{y}\right)\)
\(\Leftrightarrow\left(x^2+\dfrac{2x}{y}+\dfrac{1}{y^2}\right)+2\left(x^2-2xy+y^2\right)=11\)
\(\Leftrightarrow\left(x+\dfrac{1}{y}\right)^2+2\left(x-y\right)^2=11\)
PT (2): \(2x+\dfrac{1}{y}-y=4\)
\(\Leftrightarrow\left(x+\dfrac{1}{y}\right)+\left(x-y\right)=4\)
Đặt \(a=x+\dfrac{1}{y};b=x-y\)
Hệ pt tt: \(\left\{{}\begin{matrix}a^2+2b^2=11\\a+b=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(4-b\right)^2+2b^2=11\\a=4-b\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}b=\dfrac{5}{3}\\b=1\end{matrix}\right.\\a=4-b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}b=\dfrac{5}{3}\\a=\dfrac{7}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}b=1\\a=3\end{matrix}\right.\end{matrix}\right.\)
TH1: \(a=\dfrac{7}{3};b=\dfrac{5}{3}\)\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}=\dfrac{7}{3}\\x-y=\dfrac{5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+y=\dfrac{2}{3}\\x-y=\dfrac{5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y^2-2y+3=0\left(vn\right)\\x-y=\dfrac{5}{3}\end{matrix}\right.\)
TH2:\(a=3;b=1\)\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}=3\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+y=2\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y^2-2y+1=0\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\) (thỏa mãn hệ)
Vậy hệ có nghiệm duy nhất (x;y)=(2;1).
\(\left\{{}\begin{matrix}2x-y=-3\\x+3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=-3\\2x+6y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=-3\\\left(2x-2x\right)+\left(-y-6y\right)=-3-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=-3\\-7y=-11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=-3\\y=\dfrac{11}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-\dfrac{11}{7}=-3\\y=\dfrac{11}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=-\dfrac{10}{7}\\y=\dfrac{11}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{7}\\y=\dfrac{11}{7}\end{matrix}\right.\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(-\dfrac{5}{7};\dfrac{11}{7}\right)\)
4:
x+3y=4m+4 và 2x+y=3m+3
=>2x+6y=8m+8 và 2x+y=3m+3
=>5y=5m+5 và x+3y=4m+4
=>y=m+1 và x=4m+4-3m-3=m+1
x+y=4
=>m+1+m+1=4
=>2m+2=4
=>2m=2
=>m=1
3:
x+2y=3m+2 và 2x+y=3m+2
=>2x+4y=6m+4 và 2x+y=3m+2
=>3y=3m+2 và x+2y=3m+2
=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3
ĐKXĐ: x # -1/2; y # -2
\(Đặt\ \dfrac{x-1}{2x+1}=a; \dfrac{y-2}{y+2}=b \\Hệ\ tương\ đương: \\\begin{cases} a-b=1\\3a+2b=3 \end{cases} <=> \begin{cases} 3a-3b=3\\3a+2b=3 \end{cases} \\<=>\begin{cases} -5b=0\\a-b=1 \end{cases} <=>\begin{cases} b=0\\a=1 \end{cases} \\->\begin{cases} x-1=2x+1\\y-2=0 \end{cases} <=>\begin{cases} x=-2(thoả\ ĐKXĐ)\\y=2(thoả\ ĐKXĐ) \end{cases}\)
dễ nhưng mà tịt
\(\hept{\begin{cases}2x-y=1\\3x+y=4\end{cases}}\Leftrightarrow x=y=1\)