tìm x,y
4x=y và x+y=21
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{6}=\dfrac{y}{9}\left(1\right)\)
Ta có: \(\dfrac{x}{3}=\dfrac{z}{5}\)
nên \(\dfrac{x}{6}=\dfrac{z}{10}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}\)
Đặt \(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k\\y=9k\\z=10k\end{matrix}\right.\)
Ta có: \(x^2+y^2+z^2=21\)
\(\Leftrightarrow k^2=\dfrac{21}{217}\)
Trường hợp 1: \(k=\dfrac{\sqrt{93}}{31}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k=\dfrac{6\sqrt{93}}{31}\\y=9k=\dfrac{9\sqrt{93}}{31}\\z=10k=\dfrac{10\sqrt{93}}{31}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{\sqrt{93}}{31}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k=\dfrac{-6\sqrt{93}}{31}\\y=9k=\dfrac{-9\sqrt{93}}{31}\\z=10k=\dfrac{-10\sqrt{93}}{31}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}=\dfrac{x^2+y^2+z^2}{217}=\dfrac{21}{217}=\dfrac{3}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{31}\cdot6=\dfrac{18}{31}\\y=\dfrac{3}{31}\cdot9=\dfrac{27}{31}\\z=\dfrac{3}{31}\cdot10=\dfrac{30}{31}\end{matrix}\right.\)
\(4x=3y\Rightarrow x=\dfrac{3}{4}y\)
\(x+y=21\Rightarrow\dfrac{3}{4}y+y=21\Rightarrow\dfrac{7}{4}y=21\Rightarrow y=12\)
\(\Rightarrow x=9\)
Bài 1:
Giải:
Vì đại lượng x tỉ lệ nghịch với đại lượng y nên ta có:
\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) và \(x+y=14\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)
+) \(\frac{x}{4}=2\Rightarrow x=8\)
+) \(\frac{y}{3}=2\Rightarrow y=6\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(8;6\right)\)
Bài 2:
Giải:
Vì x và y là 2 đại lượng tỉ lệ nghịch nên ta có:
\(6x=8y\Rightarrow\frac{x}{8}=\frac{y}{6}\) và \(2x-3y=10\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{6}=\frac{2x}{16}=\frac{3y}{18}=\frac{2x-3y}{16-18}=\frac{10}{-2}=-5\)
+) \(\frac{x}{8}=-5\Rightarrow x=-40\)
+) \(\frac{y}{6}=-5\Rightarrow y=-30\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-40;-30\right)\)
1/ Ta có: x;y tỉ lệ nghịch với 3,4
=> \(\frac{\frac{x}{1}}{3}\)=\(\frac{\frac{y}{1}}{4}\) và x+y = 14
Áp dụng tính chất dãy tỉ số bằng nhau, Ta có:
\(\frac{\frac{x}{1}}{3}\)=\(\frac{\frac{y}{1}}{4}\)=\(\frac{x+y}{\frac{1}{3}+\frac{1}{4}}\)=\(\frac{\frac{14}{7}}{12}\)=24
\(\frac{\frac{x}{1}}{3}\)=24 => x = 8
\(\frac{\frac{y}{1}}{4}\)=24 => y = 6
Vậy x = 8 ; y =6
2/ Ta có: x;y tỉ lệ nghịch với 6;8
=> \(\frac{\frac{x}{1}}{6}\)=\(\frac{\frac{y}{1}}{8}\) và 2x-3y = 10
Áp dụng tính chất dãy tỉ số bằng nhau:
Ta có: \(\frac{\frac{x}{1}}{6}\)=\(\frac{\frac{y}{1}}{8}\)=\(\frac{2x-3y}{2.\frac{1}{6}-3.\frac{1}{8}}\)=\(\frac{\frac{10}{-1}}{24}\)=\(\frac{-5}{12}\)
\(\frac{\frac{x}{1}}{6}\)=\(\frac{-5}{12}\)=> x = \(\frac{-5}{72}\)
\(\frac{\frac{y}{1}}{8}\)=\(\frac{-5}{12}\)=> y = \(\frac{-5}{96}\)
Vậy x= \(\frac{-5}{72}\)
y = \(\frac{-5}{96}\)
a,Vì y tỉ lệ thuận với x theo hệ số tỉ lệ k⇒y=k.x⇒k=\(\dfrac{y}{x}\)=\(\dfrac{30}{6}\)=5Vậy hệ số tỉ lệ của y đối với x là 5b,Khi x=-2 thì y=5.(-2)=-10 Khi x=-1 thì y=5.(-1)=-5 Khi x=2 thì y=5.2=10c,Ta có y=k.x⇒x=\(\dfrac{y}{k}\) Khi y=-10 thì x=\(\dfrac{-10}{5}\)=-2 Khi y=-5 thì x=\(\dfrac{-5}{5}\)=-1 Khi y=5 thì x=\(\dfrac{5}{5}\)=1
Bổ sung thêm điều kiện $x,y$ nguyên.
Lời giải:
$31=1.31=31.1=(-1)(-31)=(-31)(-1)$
Do đó $(x,y)$ có thể nhận các giá trị $(1,31), (31,1), (-1, -31), (-31,-1)$
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{x+y}{4+3}=\dfrac{24}{7}\)
Do đó: x=96/7; y=72/7
giả sử mình có ví dụ này bạn hiểu và làm được bài đó của bạn chứ
f ) x + y = x . y = x : y
Ta có :
x+y=xy⇒x=xy−y=y⋅(x−1)⇒x:y=x−1x+y=xy⇒x=xy−y=y⋅(x−1)⇒x:y=x−1
Mặt khác , x : y = x + y ( gt )
⇒x−1=x+y⇒x−x=1+y⇒1+y=0⇒y=−1⇒x−1=x+y⇒x−x=1+y⇒1+y=0⇒y=−1
+)x=(x−1)⋅y⇒x=(x−1)⋅(−1)⇒x=−x+1⇒2x=1⇒x=12+)x=(x−1)⋅y⇒x=(x−1)⋅(−1)⇒x=−x+1⇒2x=1⇒x=12
Vậy x = 12,y=−1
Không hiểu hỏi mình nha
\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\\ \Leftrightarrow6x-42=7y-42\\ \Leftrightarrow6x=7y\\ \Leftrightarrow\dfrac{x}{7}=\dfrac{y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{6}=\dfrac{x-y}{7-6}=\dfrac{-4}{1}=-4\\ \dfrac{x}{7}=-4\Leftrightarrow x=-28\\ \dfrac{y}{6}=-4\Leftrightarrow y=-24\)
\(4x=y\Rightarrow\dfrac{x}{1}=\dfrac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{1}=\dfrac{y}{4}=\dfrac{x+y}{1+4}=\dfrac{21}{5}\)
\(x=\dfrac{21}{5}\\ \dfrac{y}{4}=\dfrac{21}{5}\Rightarrow y=\dfrac{82}{5}\)