K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 3 2022

Lời giải:
Kẻ $DK\perp BC$. Xét tam giác $BAD$ và $BKD$ có:
$\widehat{BAD}=\widehat{BKD}=90^0$

$\widehat{ABD}=\widehat{KBD}$ (do $BD$ là tia phân giác $\widehat{B}$)

$BD$ chung

$\Rightarrow \triangle BAD=\triangle BKD$ (ch-gn) 

$\Rightarrow AD=DK$
Mà $DK<DC$ (do trong tam giác vuông $DKC$ thì cạnh góc vuông $DK$ luôn nhỏ hơn cạnh huyền $DC$)

$\Rightarrow AD< DC$

AH
Akai Haruma
Giáo viên
6 tháng 3 2022

Hình vẽ:

28 tháng 7 2023

mik lm nếu bn like =)

28 tháng 7 2023

Bài 4:
a) Ta có tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc CAE + góc BAC = 90 độ, tức là EC vuông góc với BC.

b) Vì tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc BAE = góc BAC + góc CAE = 45 độ + 45 độ = 90 độ. Do đó, tứ giác ABCE là tứ giác vuông.

Bài 5:
a) Gọi K là giao điểm của đường thẳng AM và BH. Ta cần chứng minh góc BAK = góc CAK.
Vì CM = CA, ta có góc CMA = góc CAM. Vì đường thẳng AM song song với CA, nên góc CMA = góc KAB (do AB cắt đường thẳng AM tại I). Từ đó suy ra góc CAM = góc KAB.
Vì AH là đường cao, nên góc BAH = góc CAH. Từ đó suy ra góc BAK = góc CAK.
Vậy, AM là phân giác của góc BAH.

b) Ta có AB + AC = AB + AH + HC = BH + HC > BC (theo bất đẳng thức tam giác).
Vậy, luôn luôn có AB + AC < AH + BC.

21 tháng 3 2022

C

23 tháng 9 2020

                                                                 Bài giải

A B C D 1 2 1

Vì \(\Delta ABC\) vuông cân tại A nên \(\widehat{B_1}=\widehat{C_1}=\left(180^o-90^o\right)\text{ : }2=45^o\)

Vì \(\Delta BCD\) vuông cân tại B nên \(\widehat{D}=\widehat{C_2}=\left(180^o-90^o\right)\text{ : }2=45^o\)

\(\Rightarrow\text{ }\widehat{B_1}=\widehat{C_2}\left(=45^o\right)\) nên \(AB\text{ }//\text{ }CD\)

\(\Rightarrow\text{ Tứ giác ABCD là hình thang}\)

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

30 tháng 7 2018

Giải bài tập Đại số 11 | Để học tốt Toán 11

Gọi d là đường phân giác của góc B của ΔABC.

+ Phép đối xứng qua d: biến H thành H’ ∈ AB, biến A thành A’ ∈ BC; biến B thành B

(Dễ dàng nhận thấy H’ ∈ BA; A’ ∈ BC).

⇒ ΔH’BA’ = Đd(ΔHBA).

⇒ ΔH’BA’ = ΔHBA.

Mà ΔABC Giải bài tập Đại số 11 | Để học tốt Toán 11 ΔHBA theo tỉ số Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ ΔABC Giải bài tập Đại số 11 | Để học tốt Toán 11 ΔH’BA’ theo tỉ số k

⇒ AB = k.H’B; BC = k.BA’.

Mà A ∈ tia BH’ ; C ∈ tia BA’

Giải bài tập Đại số 11 | Để học tốt Toán 11

Vậy phép đồng dạng cần tìm là phép vị tự tâm B, tỉ số Giải bài tập Đại số 11 | Để học tốt Toán 11 hợp với phép đối xứng trục d là phân giác của Giải bài tập Đại số 11 | Để học tốt Toán 11

11 tháng 10 2021

Bài 1: 

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay \(AB=\sqrt{13}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)

nên \(\widehat{B}=59^0\)

hay \(\widehat{C}=31^0\)

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Vậy: \(AB=4\sqrt{5}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:

\(MP^2=MN^2+NP^2\)

\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)

hay MN=4cm

Vậy: MN=4cm

9 tháng 2 2021

Bài 1 :

- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)

\(\Leftrightarrow AB^2+8^2=12^2\)

\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )

Vậy ...

Bài 2 :

- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :

\(MN^2+NP^2=MP^2\)

\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)

\(\Leftrightarrow MN=4\) ( đvđd )

Vậy ...