K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Ta có:\(2x^2+2xy+4x+y^2+8\)

         \(=x^2+4x+4+x^2+2xy+y^2+4\)

          \(=\left(x+2\right)^2+\left(x+y\right)^2+4\)

                  Vì \(\left(x+2\right)^2\ge0;\left(x+y\right)^2\ge0\)

                           \(\Rightarrow\left(x+2\right)^2+\left(x+y\right)^2+4\ge4\)

Vậy 2x^2+2xy+4x+y^2+8>0 voi moi x,y

28 tháng 6 2017

2x^2+2xy+4x+y^2+8

 = x^2+2xy+y^2 +x^2 + 4x+4+4 

=(x+y)^2 + (x+2)^2 +4

Vì (x+y)^2 và (x+2)^2 đều >=0 

Nên (x+y)^2+(x+2)^2+4   >=  4  >0

Vậy.........n.n

NV
7 tháng 8 2021

ĐKXĐ: \(x\le\dfrac{1}{2}\)

\(4x^2+y^2+2x+y=2-4xy\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+2x+y-2=0\)

\(\Leftrightarrow\left(2x+y\right)^2+2x+y-2=0\)

\(\Rightarrow\left[{}\begin{matrix}2x+y=1\\2x+y=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1-2x=y\\1-2x=y+3\end{matrix}\right.\)

Thế vào pt dưới:

\(\Rightarrow\left[{}\begin{matrix}8\sqrt{y}+y^2-9=0\\8\sqrt{y+3}+y^2-9=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)