chứng minh : \(\frac{n\left(n+1\right)}{2}\) và \(2n+1\) nguyen tố cùng nhau với mọi \(n\in N\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d thuộc ƯC(\(\frac{n\left(n+1\right)}{2}\),2n+1) thì n(n+1) chia hết cho d và 2n+1 chia hết cho d.
=>n(2n+1) - n(n+1)chia hết cho d
<=>2\(n^2\)+n - \(n^2\)-n chia hết cho d
<=> \(n^2\)chia hết cho d
Từ n(n+1) chia hết cho d và \(n^2\) chia hết cho d => n chia hết cho d
Ta lại có 2n+1 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy 2 số đó là 2 số nguyen tố
Gọi \(ƯCLN\left(2n+1,6n+5\right)\) là a
Theo đề ra , ta có :
\(\begin{cases}2n+1⋮a\\6n+5⋮a\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}6n+3⋮a\\6n+5⋮a\end{cases}\)
\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮a\)
\(\Rightarrow\left(6n+5-6n-3\right)⋮a\)
\(\Rightarrow2⋮a\) Vì : 2n + 1 và 6n + 5 là số lẻ \(\RightarrowƯCLN\left(2n+1,6n+5\right)=1\)
Vì : có ƯCLN = 1 => 2n + 1 và 6n + 5 là hai số nguyên tố cùng nhau
Vậy ...
ban vao cho cau hoi cua tran thi y do !
cau hoi giong cua ban !tk mk nhe !
Lời giải:
Gọi $d$ là ƯCLN của $2n+1$ và $2n+2$
\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ 2n+2\vdots d\end{matrix}\right.\Rightarrow (2n+2)-(2n+1)\vdots d\) hay $1\vdots d$
$\Rightarrow d=1$
Vậy ƯCLN của $2n+1, 2n+2$ là $1$ nên $2n+1, 2n+2$ nguyên tố cùng nhau.
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Gọi d là ƯCLN( \(\frac{n\left(n+1\right)}{2}\), 2n+1) ( d thuộc N*)
Khi đó \(\frac{n\left(n+1\right)}{2}\) chia hết cho d và 2n+1 chia hết cho d
<=> n(n+1) chia hết cho d và 2n+1 chia hết cho d
<=> n2 + n chia hết cho d và n(2n+1) chia hết cho d
<=> n2+n chia hết cho d, 2n2+n chia hết cho d
=> (2n2+n) - (n2+n) chia hết cho d
=> n2 chia hết cho d
Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d
=> n chia hết cho d
=> 2n chia hết cho d
Mà 2n+1 chia hết cho d
=> (2n+1)-2n chia hết cho d
=> 1 chia hết cho d
Mà d \(\in\) N => d=1
Vậy \(\frac{n\left(n+1\right)}{2}\) và 2n+1 nguyên tố cùng nhau với mọi n \(\in\) N
Gọi d = ƯCLN( n(n+1)/2, 2n+1) ( d thuộc N*)
=> n(n+1)/2 chia hết cho d, 2n+1 chia hết cho d
=> n(n+1) chia hết cho d, 2n+1 chia hết cho d
=> n2+n chia hết cho d, n(2n+1) chia hết cho d
=> n2+n chia hết cho d, 2n2+n chia hết cho d
=> (2n2+n) - (n2+n) chia hết cho d
=> 2n2+n-n2-n chia hết cho d
=> n2 chia hết cho d
Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d
=> n chia hết cho d
=> 2n chia hết cho d
Mà 2n+1 chia hết cho d => (2n+1)-2n chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N => d=1
=> ƯCLN( n(n+1)/2, 2n+1)=1
Chứng tỏ n(n+1)/2 và 2n+1 nguyên tố cùng nhau với mọi n thuộc N