1/1x3 + 1/3x5 + 1/5x7 +........+1/2019x2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)
Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=\dfrac{1}{100}\)
\(\Rightarrow x+1=100\)
\(x=100-1\)
\(x=99\)
=(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9) chia 2
=(1-1/9)chia 2
=8/9 chia 2
=4/9
Đặt �=11�3+13�5+15�7+17�9A=1x31+3x51+5x71+7x91
2�=21�3+23�5+25�7+27�92A=1x32+3x52+5x72+7x92
2�=11−13+13−15+...+17−192A=11−31+31−51+...+71−91
2�=11−19=892A=11−91=98
�=89.12=49A=98.21=94
a, Đặt :
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+..............+\dfrac{1}{19.21}\)
\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+............+\dfrac{2}{19.21}\)
\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+..........+\dfrac{1}{19}-\dfrac{1}{21}\)
\(\Leftrightarrow2A=1-\dfrac{1}{21}\)
\(\Leftrightarrow2A=\dfrac{20}{21}\)
\(\Leftrightarrow A=\dfrac{10}{21}\)
b, \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...........+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)
\(\Leftrightarrow2A=1-\dfrac{1}{2n+1}\)
\(\Leftrightarrow2A=\dfrac{2n}{2n+1}\)
\(\Leftrightarrow A=\dfrac{n}{2n+1}\)
Đặt \(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}\)
\(2A=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}\)
\(2A=\frac{1}{1}-\frac{1}{9}=\frac{8}{9}\)
\(A=\frac{8}{9}.\frac{1}{2}=\frac{4}{9}\)
A= 1/(1x3) + 1/(3x5)+ 1/(5x7) + 1/(7x9) + 1/(9x11)
A x 2 = 2/(1x3) + 2/(3x5)+ 2/(5x7) + 2/(7x9) + 2/(9x11)
Nhận xét :
2/(1x3) = 1 - 1/3
2/(3x5) = 1/3 - 1/5
2/(5x7) = 1/5 - 1/7
2/(7x9) = 1/7 - 1/9
2/(9x11) = 1/9 - 1/11
A x 2 = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11
A x 2 = 1 - 1/11
A x 2 = 10/11
A = 10/11 : 2 = 5/11
các bạn k mình nha!
Coi A=1/1x3+1/3x5+1/5x7+1/7x9
=>2A=2x(1/1x3+1/3x5+1/5x7+1/7x9)=2/1x3+2/3x5+2/5x7+2/7x9
=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9
=1-1/9=8/9
=>A=8/9:2=4/9
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}\)
\(=\frac{50}{101}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\)
\(=2\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\right)\)
\(=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
1/1 x 3 + 1/3 x 5 + 1/5 x 7 + 1/7 x 9 + 1/9 x 11
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11
= 1 - 1/11
= 10/11
toán lớp 1 đây à
voãi cả toán lớp 1 khó như toán lớp 4 zị e