K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

\(^{x^4+3x^3+x^2-12x-20}\)

= x^4 + 2X^3 + x^3 + 2x^2 - X^2 - 2X -10X - 20

= X^3( x + 2 ) + X^2( x+2) -x(x+2) - 10(x+2)

= ( x^3 + x^2 - x -10) (x+2 )

= (x-2)( x^2 + 3x+5)(x+2)

15 tháng 6 2016

x^4+3x^2+x^2-12x-20

=x^4+2x^3+x^3+2x^2-x^2-2x-10x-20

=x^3(x+2)+x^2(x+2)-x(x+2)-10(x+2)

=(x+2)(x^3+x^2-x-10)

=(x+2)(x^3-2x^2+3x^2-6x+5x-10)

=(x+2)[x^2(x-2)+3x(x-2)+5(x-2)]

=(x+2)(x-2)(x^2+3x+5)

2 tháng 8 2021

cái j thế bn

13 tháng 12 2021

\(x^4+4\)

\(\left(x^2+2\right)^2-4x^2\)

\(\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Đa thức này không phân tích được thành nhân tử bạn nhé. 

22 tháng 12 2022

`x^4+x^2 y^2+y^4`

`=x^4+2x^2 y^2 +y^4-x^2 y^2`

`=(x^2+y^2)^2-(xy)^2`

`=(x^2-xy+y^2)(x^2+xy+y^2)`

29 tháng 7 2021

x4 - 2x3-2x2 -2x -3

=(x4+x3)-(3x3+3x2)+(x2+x)-(3x+3)

=x3(x+1)-3x2(x+1)+x(x+1)-3(x+1)

= (x3-3x2+x-3)(x+1)

= ((x3-3x2)+(x-3))(x+1)

= (x2(x-3)+(x-3))(x+1)

=(x2+1)(x-3)(x+1)

5 tháng 9 2021

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2

14 tháng 10 2021

a) = (x - 4y)(x + 1)

b) = (x - 3y)^2 - 2^2

= (x - 3y - 2)(x - 3y + 2)

c) = x^2(x + 3) - 7x(x + 3) + 9(x + 3)

= (x + 3)(x^2 - 7x + 9)

14 tháng 10 2021

a: \(x^2-4xy+x-4y\)

\(=x\left(x-4y\right)+\left(x-4y\right)\)

\(=\left(x-4y\right)\left(x+1\right)\)

b: \(x^2-6xy+9y^2-4\)

\(=\left(x-3y\right)^2-4\)

\(=\left(x-3y-2\right)\left(x-3y+2\right)\)

13 tháng 11 2021

a) \(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)

b) \(=\left(x^2+2x\right)+\left(10x+20\right)=x\left(x+2\right)+10\left(x+2\right)=\left(x+2\right)\left(x+10\right)\)

c) đặt \(x^2+x+1=t\)

\(\left(x^2+x+1\right)\left(x^2+x+4\right)+2=t\left(t+3\right)+2=t^2+3t+2=\left(t^2+t\right)+\left(2t+2\right)=t\left(t+1\right)+2\left(t+1\right)=\left(t+1\right)\left(t+2\right)=\left(x^2+x+2\right)\left(x^2+x+3\right)\)