4-(1/2x+3/4)=-15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ 3-2x+4+6x=x+7+3x
⇔-2x+6x-x-3x=0
⇔0x=0 (Vô số nghiệm)
2/-6(1,5-2x)=3(-15+2x)
⇔-9+12x=-45+6x
⇔6x+36=0
⇔6(x+6)=0
⇔x+6=0
⇔x=-6
Vậy S ϵ {-6}
3/ 3(2x-5)+5(x-1)=4(x+1)
⇔6x-15+5x-5=4x+4
⇔7x=24
⇔x=\(\dfrac{24}{7}\)
Vậy S ϵ {\(\dfrac{24}{7}\)}
1) Ta có: \(3-2x+4+6x=x+7+3x\)
\(\Leftrightarrow4x+7=4x+7\)
\(\Leftrightarrow4x+7-4x-7=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\in R\)}
2) Ta có: \(-6\cdot\left(1.5-2x\right)=3\left(-15+2x\right)\)
\(\Leftrightarrow-9+12x=-45+6x\)
\(\Leftrightarrow12x-9+45-6x=0\)
\(\Leftrightarrow6x+36=0\)
\(\Leftrightarrow6x=-36\)
hay x=-6
Vậy: S={-6}
3) Ta có: \(3\left(2x-5\right)+5\left(x-1\right)=4\left(x+1\right)\)
\(\Leftrightarrow6x-15+5x-5=4x+4\)
\(\Leftrightarrow11x-20-4x-4=0\)
\(\Leftrightarrow7x-24=0\)
\(\Leftrightarrow7x=24\)
\(\Leftrightarrow x=\dfrac{24}{7}\)
Vậy: \(S=\left\{\dfrac{24}{7}\right\}\)
a) 2x . 4 = 128
<=> 2x = 32
<=> 2x = 25
<=> x = 5
b) x15 = x1
<=> x15 - x = 0
<=> x(x14 - 1) = 0
<=> \(\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{14}=1^{14}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
c) (2x + 1)3 = 125
<=> (2x + 1)3 = 53
<=> 2x + 1 = 5
<=> 2x = 4
<=> x = 2
d) (x - 5)4 = (x - 5)6
<=> (x - 5)6 - (x - 5)4 = 0
<=> (x - 5)4[(x - 5)2 - 1] = 0
<=> \(\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}}\)
Khi (x - 5)4 = 0 => x - 5 = 0 => x = 5
Khi (x - 5)2 - 1 = 0 <=> (x - 5)2 = 12 <=> \(\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
a)x =-1
b)x = 7 phần 30
c)x = 1
d)x = 5/18
nếu đúng thì hãy cho mình nha
a) Ta có: \(\left(5x-15\right)\left(4+6x\right)=0\)
\(\Leftrightarrow5\left(x-3\right)\cdot2\cdot\left(2+3x\right)=0\)
\(\Leftrightarrow10\left(x-3\right)\left(2+3x\right)=0\)
Vì 10\(\ne\)0 nên
\(\left[{}\begin{matrix}x-3=0\\2+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{3;\frac{-2}{3}\right\}\)
b) Ta có: \(\left(2x-1\right)\left(5x-6\right)\left(\frac{1}{2}x-\frac{3}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\5x-6=0\\\frac{1}{2}x-\frac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\5x=6\\\frac{1}{2}x=\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{6}{5}\\x=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{6}{5};\frac{3}{2}\right\}\)
c) Ta có: \(\left(3-4x\right)\left(2x-\frac{3}{4}-x-\frac{4}{3}\right)=0\)
\(\Leftrightarrow\left(3-4x\right)\left(x-\frac{25}{12}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3-4x=0\\x-\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=3\\x=\frac{25}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=\frac{25}{12}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{4};\frac{25}{12}\right\}\)
d) Ta có: \(\left(\frac{2}{3}x-\frac{1}{6}\right)\left[5\left(x-1\right)-\frac{3}{2}-\frac{\left(2-3\right)\left(x-1\right)}{3}\right]=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left[5x-5-\frac{3}{2}-\frac{-1\left(x-1\right)}{3}\right]=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(5x-5-\frac{3}{2}-\frac{1-x}{3}\right)=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(5x-\frac{13}{2}-\frac{1}{3}+\frac{x}{3}\right)=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(\frac{15x}{3}-\frac{41}{6}+\frac{x}{3}\right)=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(\frac{16x}{3}-\frac{41}{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{2}{3}x-\frac{1}{6}=0\\\frac{16x}{3}-\frac{41}{6}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{2}{3}x=\frac{1}{6}\\\frac{16}{3}\cdot x=\frac{41}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{6}:\frac{2}{3}\\x=\frac{41}{6}:\frac{16}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{41}{32}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{4};\frac{41}{32}\right\}\)
\(a.\left(5x-15\right)\left(4+6x\right)=0\\ \left[{}\begin{matrix}5x-15=0\\4+6x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-2}{3}\end{matrix}\right.\)
\(b.\left(2x-1\right)\left(5x-6\right)\left(\frac{1}{2}x-\frac{3}{4}=0\right)\\ \left[{}\begin{matrix}2x-1=0\\5x-6=0\\\frac{1}{2}x-\frac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{6}{5}\\x=-\frac{3}{2}\end{matrix}\right.\)
c.
\(\left(3-4x\right)\left(2x-\frac{3}{4}-x-\frac{4}{3}\right)=0\\ \Leftrightarrow\left(3-4x\right)\left(x-\frac{25}{12}\right)=0\\ \left[{}\begin{matrix}3-4x=0\\x-\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=\frac{25}{2}\end{matrix}\right.\)
1: =>3^x=81
=>x=4
2: =>2^x=8
=>x=3
3: =>x^3=2^3
=>x=2
4: =>x^20-x=0
=>x(x^19-1)=0
=>x=0 hoặc x=1
5: =>2^x=32
=>x=5
6: =>(2x+1)^3=9^3
=>2x+1=9
=>2x=8
=>x=4
7: =>x^3=115
=>\(x=\sqrt[3]{115}\)
8: =>(2x-15)^5-(2x-15)^3=0
=>(2x-15)^3*[(2x-15)^2-1]=0
=>2x-15=0 hoặc (2x-15)^2-1=0
=>2x-15=0 hoặc 2x-15=1 hoặc 2x-15=-1
=>x=15/2 hoặc x=8 hoặc x=7
1. Tìm số tự nhiên x biết:
1) \(3^x.3=243\)
\(3^x=243:3\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
_____
2) \(7.2^x=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
\(\Rightarrow x=3\)
_____
3) \(x^3=8\)
\(x^3=2^3\)
\(\Rightarrow x=3\)
_____
4) \(x^{20}=x\)
\(x^{20}-x=0\)
\(x\left(x^{19}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x=1\)
5) \(2^x-15=17\)
\(2^x=17+15\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
_____
6) \(\left(2x+1\right)^3=9.81\)
\(\left(2x+1\right)^3=729=9^3\)
\(\rightarrow2x+1=9\)
\(2x=9-1\)
\(2x=8\)
\(x=8:2\)
\(\Rightarrow x=4\)
_____
7) \(x^6:x^3=125\)
\(x^3=125\)
\(x^3=5^3\)
\(\Rightarrow x=5\)
_____
8) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=7\\x=8\end{matrix}\right.\)
_____
9) \(3^{x+2}-5.3^x=36\)
\(3^x.\left(3^2-5\right)=36\)
\(3^x.\left(9-5\right)=36\)
\(3^x.4=36\)
\(3^x=36:4\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
_____
10) \(7.4^{x-1}+4^{x+1}=23\)
\(\rightarrow7.4^{x-1}+4^{x-1}.4^2=23\)
\(4^{x-1}.\left(7+4^2\right)=23\)
\(4^{x-1}.\left(7+16\right)=23\)
\(4^{x-1}.23=23\)
\(4^{x-1}=23:23\)
\(4^{x-1}=1\)
\(4^{x-1}=4^1\)
\(\rightarrow x-1=0\)
\(x=0+1\)
\(\Rightarrow x=1\)
Chúc bạn học tốt
1) \(2x^3-8x=0\)
\(\Leftrightarrow2x\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
Vậy \(x\in\left\{0;\pm2\right\}\)
2) \(2x\left(x-15\right)-4\left(x-15\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(x-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\x-15=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=15\end{cases}}\)
Vậy \(x\in\left\{2;15\right\}\)
1
\(2x^3-8x=0\)
\(2x\left(x^2-4\right)=0\)
\(\orbr{\begin{cases}2x=0\\x^2-4=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
2
\(2x\left(x-15\right)-4\left(x-15\right)=0\)
\(\left(2x-4\right)\left(x-15\right)=0\)
\(\orbr{\begin{cases}2x-4=0\\x-15=0\end{cases}}\)
\(\orbr{\begin{cases}2x=4\\x=0+15\end{cases}}\)
\(\orbr{\begin{cases}x=2\\x=15\end{cases}}\)
Sửa đề: \(\dfrac{2x}{3}+\dfrac{3x-15}{4}-\dfrac{3\left(2x-1\right)}{2}=\dfrac{7}{6}\)
Ta có: \(\dfrac{2x}{3}+\dfrac{3x-15}{4}-\dfrac{3\left(2x-1\right)}{2}=\dfrac{7}{6}\)
\(\Leftrightarrow\dfrac{8x}{12}+\dfrac{3\left(3x-15\right)}{12}-\dfrac{18\left(2x-1\right)}{12}=\dfrac{14}{12}\)
\(\Leftrightarrow8x+9x-45-36x+18=14\)
\(\Leftrightarrow-19x-27=14\)
\(\Leftrightarrow-19x=41\)
\(\Leftrightarrow x=-\dfrac{41}{19}\)
Vậy: \(S=\left\{-\dfrac{41}{19}\right\}\)
1) (2x + 1)(3x – 2) = (5x – 8)(2x + 1)
⇔ (2x + 1)(3x – 2) – (5x – 8)(2x + 1) = 0
⇔ (2x + 1).[(3x – 2) – (5x – 8)] = 0
⇔ (2x + 1).(3x – 2 – 5x + 8) = 0
⇔ (2x + 1)(6 – 2x) = 0
⇔\(\left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=3\end{matrix}\right.\)
Vậy.....
2) 4x2 -1 = (2x + 1)(3x - 5)
⇔ (2x-1)(2x+1)-(2x+1)(3x-5)=0
⇔ (2x+1)(2x-1-3x+5)=0
⇔ (2x+1)(4-x)=0
⇔ \(\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=4\end{matrix}\right.\)
Vậy...
3)
(x + 1)2 = 4(x2 – 2x + 1)
⇔ (x + 1)2 - 4(x2 – 2x + 1) = 0
⇔ x2 + 2x +1- 4x2 + 8x – 4 = 0
⇔ - 3x2 + 10x – 3 = 0
⇔ (- 3x2 + 9x) + (x – 3) = 0
⇔ -3x (x – 3)+ ( x- 3) = 0
⇔ ( x- 3) ( - 3x + 1) = 0
⇔\(\left[{}\begin{matrix}x-3=0\\-3x+1=0\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy......
(2\(x-\dfrac{4}{3}\)): \(\dfrac{4}{15}\) - 75% = 9\(\dfrac{1}{4}\)
(2\(x\) - \(\dfrac{4}{3}\)) : \(\dfrac{4}{15}\) - 0,75 = 9,25
(2\(x\) - \(\dfrac{4}{3}\)): \(\dfrac{4}{15}\) = 9,25 + 0,75
(2\(x\) - \(\dfrac{4}{3}\)): \(\dfrac{4}{15}\) = 10
2\(x\) - \(\dfrac{4}{3}\) = 10 \(\times\) \(\dfrac{4}{15}\)
2\(x\) - \(\dfrac{4}{3}\) = \(\dfrac{8}{3}\)
2\(x\) = \(\dfrac{8}{3}\) + \(\dfrac{4}{3}\)
2\(x\) = \(\dfrac{12}{3}\)
2\(x\) = 4
\(x\) = 4:2
\(x\) = 2
\(\left(2x-\dfrac{4}{3}\right)\div\dfrac{4}{15}-75\%=9\dfrac{1}{4}\)
\(\left(2x-\dfrac{4}{3}\right)\div\dfrac{4}{15}-\dfrac{3}{4}=\dfrac{37}{4}\)
\(\left(2x-\dfrac{4}{3}\right)\div\dfrac{4}{15}=10\)
\(2x-\dfrac{4}{3}=\dfrac{8}{3}\)
\(2x=\dfrac{8}{3}+\dfrac{4}{3}\)
\(2x=4\)
\(x=2\)
4 - ( 1/2x + 3/4 ) = -15
=> 1/2x + 3/4 = 4 - ( -15 )
=> 1/2x + 3/4 = 19
=> 1/2x = 19 - 3/4
=> 1/2x = 73/4
=> x = 73/4 : 1/2
=> x = 73/2
Vậy x = 73/2