K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

\(VT=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\ge4+2+5=11\)

12 tháng 7 2019

Em thử nhá, ko chắc đâu. Sai xin bỏ qua cho ạ.

Dễ thấy x, y đều khác 0. Đặt x - y = t khác 0 kết hết x > y suy ra t > 0 và x = t + y. Suy ra 1 =xy = y(t+y) = yt + y2 suy ra 2 = 2yt + 2y2

\(VT=\frac{t^2+2ty+2y^2}{t}=\frac{t^2+2}{t}=t+\frac{2}{t}\) với t > 0. Áp dụng BĐT Cô si ta được:

\(VT=t+\frac{2}{t}\ge2\sqrt{t.\frac{2}{t}}=2\sqrt{2}\) (đpcm)

Đẳng thức xảy ra khi \(t=\frac{2}{t}\Rightarrow t=\sqrt{2}\text{ và }\left(t+y\right)y=1\Leftrightarrow\left(\sqrt{2}+y\right)y=1\)

\(\Leftrightarrow y^2+\sqrt{2}y-1=0\Leftrightarrow y=\frac{\sqrt{6}-\sqrt{2}}{2}\text{ hoặc }y=\frac{-\sqrt{6}-\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{\sqrt{6}+\sqrt{2}}{2}\text{hoặc }x=\frac{-\sqrt{6}+\sqrt{2}}{2}\)

Do đó đẳng thức xảy ra khi \(\left(x;y\right)=\left\{\left(\frac{\sqrt{6}+\sqrt{2}}{2};\frac{\sqrt{6}-\sqrt{2}}{2}\right),\left(\frac{-\sqrt{6}+\sqrt{2}}{2};\frac{-\sqrt{6}-\sqrt{2}}{2}\right)\right\}\)

NV
19 tháng 6 2019

\(P=\frac{1}{x^3\left(2y-x\right)}+x\left(2y-x\right)-x\left(2y-x\right)+x^2+y^2\)

\(P\ge\frac{2}{x}-2xy+2x^2+y^2\)

\(P\ge\frac{1}{x}+\frac{1}{x}+x^2+\left(x-y\right)^2\ge3+\left(x-y\right)^2\ge3\)

Dấu "=" xảy ra khi \(x=y=1\)

AH
Akai Haruma
Giáo viên
19 tháng 6 2019

Lời giải:

Với $x,y$ là các số thực dương, áp dụng BĐT Cauchy ta có:

\(x^2+y^2\geq 2xy\)

\(\Rightarrow \frac{1}{x^3(2y-x)}+x^2+y^2\geq \frac{1}{x^3(2y-x)}+2xy(1)\)

$2y>x$ nên $2y-x>0$. Tiếp tục áp dụng BĐT Cauchy cho các số dương ta có:

\(\frac{1}{x^3(2y-x)}+2xy=\frac{1}{x^3(2y-x)}+x(2y-x)+x^2\geq 3\sqrt[3]{\frac{1}{x^3(2y-x)}.x(2y-x).x^2}=3(2)\)

Từ \((1);(2)\Rightarrow \frac{1}{x^3(2y-x)}+x^2+y^2\geq 3\) (đpcm)

Dấu "=" xảy ra khi $x=y=1$

18 tháng 3 2020

cái này mik chịu, mik mới có lớp 7

19 tháng 3 2020

1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)

Mà b+a>b-a ; p là số nguyên tố 

=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)

=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)

Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4

Mà p là số nguyên tố 

=> \(p^2\)chia 8 dư 1

=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)

+Số chính phương chia 3 luôn dư 0 hoặc 1

Mà p là số nguyên tố lớn hơn 3

=> \(p^2\)chia 3 dư 1

=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)

Từ (1);(2)=> \(a⋮12\)

Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)

NV
9 tháng 2 2020

\(P\ge\frac{\left(x+y\right)^2}{2\left(2x^2+1\right)\left(2y^2+1\right)}+\frac{1}{xy}=\frac{2}{\left(2x^2+1\right)\left(2y^2+1\right)}+\frac{2}{9xy}+\frac{7}{9xy}\)

\(P\ge\frac{8}{4x^2y^2+2x^2+2y^2+4xy+5xy+1}+\frac{7}{9xy}\)

\(P\ge\frac{8}{4\left(\frac{x+y}{2}\right)^4+2\left(x+y\right)^2+\frac{5}{4}\left(x+y\right)^2+1}+\frac{28}{9\left(x+y\right)^2}=\frac{11}{9}\)

13 tháng 1 2015

1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)

b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)

28 tháng 3 2019

Câu hỏi của Winkies:bạn tham khảo tại đây nhé!