giải hệ PT :
\(x^3+x^3y^3+y^3=17\)
\(x+xy+y=5\)
giúp mình với . Mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).
ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).
Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)
Do đó x > 0 nên y > 0.
Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).
Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).
Dấu "=" xảy ra khi và chỉ khi a = b.
Áp dụng bất đẳng thức trên ta có:
\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)
\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)
Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4)
Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).
Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)
Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).
Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.
Thay x = y vào (2) ta được:
\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))
PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
Bài làm
Ta có: P = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
P = x3 + x2y - 2x2 - xy - y2 + 2y + y + x + 2017
P = ( x3 + x2y − 2x2 ) − ( xy + y2 − 2y ) + ( x + y − 2 ) + 2019
P = x2( x + y − 2 ) − y( x + y − 2 ) + ( x + y − 2 ) + 2019
Mà x + y = 2 => x + y - 2 = 0
Thay x + y - 2 = 0 và đa thức P, ta được:
P = x2 . 0 - y . 0 + 0 + 2019
P = 0 - 0 + 0 + 2019
P = 2019
Vậy P = 2019 tại x + y = 2
# Học tốt #
x + y - xy = 1
=> x + y - xy - 1 = 0
=> (x - 1) + y(1 - x) = 0
=> (y - 1)(1 - x) = 0
=> \(\orbr{\begin{cases}y=1\\x=1\end{cases}}\)
Nếu x = 1
Khi đó x2 + y2 = 5
<=> 12 + y2 = 5
=> y2 = 4
=> y = \(\pm\)2
Nếu y = 1
=> x2 + y2 = 5
=> x2 + 12 = 5
=> x2 = 4
=> x = \(\pm\)2
Vậy các cặp (x;y) thỏa mãn là (1;2) ; (1;-2) ; (2;1) ; (-2;1)
a. Ta có : (x + y)[(x - y)2 + xy]
= (x + y)(x2 - 2xy + y2 + xy)
= (x + y)(x2 - xy + y2)
= x3 + y3
b. Ta có : x3 + y3 - xy(x + y)
= x3 + y3 - x2y - xy2
=x2(x - y) + y2(y - x)
= (x - y)(x2 - y2)
= (x - y)2.(x + y) đpcm
c) Ta có (x + y)3 - 3xy(x + y)
= (x + y)[(x + y)2 - 3xy)
= (x + y)(x2 + 2xy + y2 - 3xy)
= (x + y)(x2 - xy + y2) (đpcm)
a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )
b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )
c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )
Đặt \(x+y=a;xy=b\)
Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}a^3-3ab+b^3=17\left(1\right)\\a+b=5\left(2\right)\end{cases}}\)
Từ (1) và (2) suy ra được : \(\left(a+b\right)^3-3ab\left(a+b\right)-3ab=17\Leftrightarrow5^3-3.5ab-3ab=17\Leftrightarrow ab=6\)
Ta có hệ mới : \(\hept{\begin{cases}a+b=5\\ab=6\end{cases}}\)
Đưa hệ trên về dạng phương trình tích.
Nghiệm của hệ trên là : \(\hept{\begin{cases}a=2\\b=3\end{cases}}\)và \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)
Thay ẩn a,b bằng ẩn x,y và hệ thức tương ứng, ta được hệ mới : \(\hept{\begin{cases}x+y=2\\xy=3\end{cases}\Leftrightarrow x,y\in\phi}\)và \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)hoặc \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Kết luận : (x;y) = (1;2) ; (2;1)
Cho biểu thức : M = (b^2 +c^2 - a^2 )^2-4b^c^2
a) Phân tích M thành 4 nhân tử bậc nhất
b) CMR : Nếu a,b,c là số đo độ dài các cạnh của một tam giác thì M<0
c) Giả sử a,b,c là các số nguyên và a+b+c chia hết cho 6 . CMR : M chia hết cho 6