cho đa thức
f(x) = x4 - 4x3 + 2x -1
+ g(x) = 3x3 + 2x2 - 2x - 6
Tính 2f (x) - g(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = x5 + 3x2 − 5x3 − x7 + x3 + 2x2 + x5 − 4x2 + x7
= (x5 + x5) + (3x2 + 2x2 – 4x2) + (-5x3 + x3) + (-x7 + x7)
= 2x5 + x2 – 4x3.
= 2x5 - 4x3 + x2
Đa thức có bậc là 5
g(x) = x4 + 4x3 – 5x8 – x7 + x3 + x2 – 2x7 + x4 – 4x2 – x8
= (x4 + x4) + (4x3 + x3) – (5x8 + x8) – (x7 + 2x7) + (x2 – 4x2)
= 2x4 + 5x3 – 6x8 – 3x7 – 3x2
= -6x8 - 3x7 + 2x4 + 5x3 - 3x2.
Đa thức có bậc là 8.
a: F(x)=3x^3-2x^2+5x-7
G(x)=3x^3-2x^2+5x+7x^2+3=3x^3+5x^2+5x+3
Bậc của F(x),G(x) đều là 3
b: N(x)=G(x)-F(x)
\(=3x^3+5x^2+5x+3-3x^3+2x^2-5x+7=7x^2+10\)
M(x)=2F(x)+G(x)
\(=6x^3-4x^2+10x-14+3x^3+5x^2+5x+3\)
\(=9x^3+x^2+15x-11\)
c: x^2-3x=0
=>x=0 hoặc x=3
\(M\left(0\right)=9\cdot0^3+0^2+15\cdot0-11=-11\)
\(M\left(3\right)=9\cdot3^3+3^2+15\cdot3-11=286\)
d: N(x)=7x^2+10>=10
Dấu = xảy ra khi x=0
A(x)+B(x)=2x-3x3+2x2+1+4x3+2x2-5
= x3+4x2+2x-4
thay x=1 vào B(x) ta được
B(x)=4.13+2.13-5
=4+2-5
=1
\(A\left(x\right)+B\left(x\right)=\left(x+2\right)\left(x^2+2x-2\right)\)
thay x=1 \(=>A\left(1\right)+B\left(1\right)=3\left(1+2-2\right)=3\)
a: P(x)=2x^3-x^2+3x+20
Q(x)=-x^3-x^2-3x-4
b: K(x)=2x^3-x^2+3x+20-x^3-x^2-3x-4
=x^3-2x^2+16
H(x)=2x^3-x^2+3x+20+x^3+x^2+3x+4
=3x^3+6x+24
c: K(-2)=(-2)^3-2*(-2)^2+16=0
=>x=-2 là nghiệm của K(x)
H(-2)=3*(-2)^3+6*(-2)+24=24-12-3*8=-12<>0
=>x=-2 ko là nghiệm
\(a,\Leftrightarrow4x^3-2x^2+a=\left(2x-3\right).a\left(x\right)\)
Thay \(x=\dfrac{3}{2}\Leftrightarrow4.\dfrac{27}{8}-2.\dfrac{9}{4}+a=0\)
\(\Leftrightarrow\dfrac{27}{2}-\dfrac{9}{2}+a=0\\ \Leftrightarrow a=-9\)
\(b,\Leftrightarrow3x^3+2x^2+x+a=\left(x+1\right).b\left(x\right)+2\)
Thay \(x=-1\Leftrightarrow-3+2-1+a=2\Leftrightarrow a=4\)
Ta có: f(x) + g(x) – h(x)
= (x5 – 4x3 + x2 – 2x + 1) + (x5 – 2x4 + x2 – 5x + 3) – (x4 – 3x2 + 2x – 5)
= x5 – 4x3 + x2 – 2x + 1 + x5 – 2x4 + x2 – 5x + 3 – x4 + 3x2 - 2x + 5
= (x5 +x5) – (2x4 + x4) – 4x3 + (x2 + x2 + 3x2)- (2x + 5x + 2x) + (1 + 3 + 5)
= (1 + 1)x5 – (2 + 1)x4 – 4x3 + (1 + 1 + 3)x2 - (2 + 5 + 2)x + (1 + 3 + 5)
= 2x5 – 3x4 – 4x3 + 5x2 – 9x + 9
b. h(x) = (2x3 + 3x2 - 2x + 3) - (2x3 + 3x2 - 7x + 2)
= 2x3 + 3x2 - 2x + 3 - 2x3 - 3x2 + 7x - 2
= 5x + 1 (0.5 điểm)
g(x) = (2x3 + 3x2 - 2x + 3) + (2x3 + 3x2 - 7x + 2)
= 2x3 + 3x2 - 2x + 3 + 2x3 + 3x2 - 7x + 2
= 4x3 + 6x2 - 9x + 5 (0.5 điểm)