tìm giá trị nhỏ nhất của (x^2)+(5*y^2)-(4*x*y)-(22*y)+(10*x)+2041
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = x4.y4 + x4 + y4 + 1
Ta có: x2 + y2 = (x + y)2 - 2xy = 10 - 2xy => x4 + y4 = (x2 + y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2
=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)2 + 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]2 + 10.(xy - 2)2 + 45
=> P > 45
Dấu "=" xảy ra <=> xy = 2
Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y2 - \(\sqrt{10}\).y + 2 = 0
\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
vậy P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\); \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
P = x4.y4 + x4 + y4 + 1
Ta có: x2 + y2 = (x + y)2 - 2xy = 10 - 2xy => x4 + y4 = (x2 + y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2
=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)2 + 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]2 + 10.(xy - 2)2 + 45
=> P > 45
Dấu "=" xảy ra <=> xy = 2
Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y2 - \(\sqrt{10}\).y + 2 = 0
\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
vậy P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\); \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
Đáp án cần chọn là: C
A=|x-2| + |y+5| -10
Ta có: |x−2|≥0 với mọi x∈Z và |y+5|≥0 với mọi y∈Z
Suy ra |x−2|+|y+5|≥0 với mọi x,y∈Z
Suy ra |x−2|+|y+5|−15≥−15 với mọi x,y∈Z hay A≥−15 với mọi x,y∈Z
Dấu bằng xảy ra khi |x−2|=0 và |y+5|=0 suy ra x=2 và y=−5 .
Vậy giá trị nhỏ nhất của của A bằng −15 khi x=2 và y=−5.
Do |x+2| > hoặc =0
|2y-10| > hoặc =0
=>|x+2|+|2y-10| > hoặc =0
=>___________+2012 > hoặc=0+2012=2012
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}}\)=>\(\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}=>\hept{\begin{cases}x=0-2=-2\\y=\left(0+10\right):2=5\end{cases}}\)
Vậy x=-2;y=5 <=> S=2012
\(\text{Bài giải}\)
\(\text{Ta có : }S=\left|x+2\right|+\left|2y-10\right|+2012\)
\(\text{Do }\left|x+2\right|\ge0\)
\(\left|2y-10\right|\ge0\)
\(\Rightarrow\text{ }\left|x+2\right|+\left|2y-10\right|\ge0\)
\(\Rightarrow\text{ }\left|x+2\right|+\left|2y-10\right|+2012\ge0+2012=2012\)
\(\text{Dấu "}=\text{" xảy ra khi :}\)
\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=0-2=-2\\y=\left(0+10\right)\text{ : }2=5\end{cases}}\)
\(\text{Thay }x=-2\text{ , }y=5\text{ ta có : }\)
\(S=\left|-2+2\right|+\left|2\cdot5-10\right|+2012\)
\(S=0+\left|10-10\right|+2012\)
\(S=0+0+2012\)
\(S=2012\)
\(\text{Vậy }GTNN\text{ của }S=2012\text{ khi }x=-2\text{ và }y=5\)
Từ gt ta có x^2+y^^2=xy+1
=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2
=(xy+1)2-2x2y2-x2y2
=x2y2+xy+1-3x2y2=-2x2y2+xy+1
=......
\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)
\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)
\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)
\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)
Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)
\(P=f\left(t\right)=-2t^2+2t+1\)
\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)
\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)