K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2022

undefined

Ko tồn tại `\triangle EBC` vì `3` điểm này thẳng hàng.

24 tháng 5 2022

Không tồn tại tam giác EBC vì 33 điểm này thẳng hàng.

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:
Do $AB\parallel CN$ nên áp dụng định lý Talet:

$\frac{AM}{MN}=\frac{AB}{CN}=\frac{DC}{CN}$

$\Rightarrow \frac{AM}{AM+MN}=\frac{DC}{DC+CN}$ hay $\frac{AM}{AN}=\frac{DC}{DN}$

$\Rightarrow AM=\frac{AN.DC}{DN}$

Do đó:

$\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{DN^2}{AN^2.DC^2}+\frac{1}{AN^2}$

$=\frac{1}{AN^2}.\frac{DN^2+DC^2}{DC^2}$

$=\frac{1}{AN^2}.\frac{DN^2+AD^2}{DC^2}$

$=\frac{1}{AN^2}.\frac{AN^2}{DC^2}$ (theo định lý Pitago)

$=\frac{1}{DC^2}$ 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Hình vẽ:

20 tháng 6 2023

Qua A kẻ đường thẳng vuông góc với AM cắt tia BC tại E.

Tam giác AEM vuông tại A có \(AB\perp EM\)

Ta có: \(S_{AEM}=\dfrac{1}{2}AE.AM=\dfrac{1}{2}AB.ME\)

\(\Rightarrow AE.AM=AB.ME\\ \Rightarrow\dfrac{1}{AB}=\dfrac{ME}{AE.AM}\\ \Rightarrow\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}\left(1\right)\)

Áp dụng đl pytago vào tam giác vuông AEM:

\(AE^2+AM^2=ME^2\)

Thay vào (1) ta có:

\(\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}=\dfrac{AE^2+AM^2}{AE^2.AM^2}=\dfrac{1}{AE^2}+\dfrac{1}{AM^2}\)

Mà AE = AN nên: \(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)

18 tháng 1 2017

ko biet tinh

27 tháng 5 2022

a, S ABM=48 cm 2

b,CK<DK( vì CK+DC=DK)