Tìm các hệ số a,b,c biết rằng\(3x^2\cdot\left(ax^2-2bx-3c\right)=3x^4-12x^3+27x^2\)với mọi x
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TM
Tìm các số nguyên a ;b ;c biết :
\(3x^2\left(ax^2-2bx-3c\right)=3x^4-12x^3+27x^2\) với \(\forall x\)
1
AT
20 tháng 6 2017
\(3x^2\left(ax^2-2bx-3c\right)=2x^4-12x^3+27x^2\)
\(\Leftrightarrow3ax^4-6bx^3-9cx^2=3\cdot1\cdot x^4-6\cdot2x^3-9\cdot\left(-3\right)x^2\)
\(\Leftrightarrow a=1;b=2;c=-3\)
Vậy \(a=1;b=2;c=-3\)
25 tháng 7 2017
Đề sai mình sửa thành:\(3x^2\left(ax^2-abcx-c\right)=3x^4-12x^3+27x^2\)
<=>\(3ax^4-3abcx^3-3cx^2=3x^4-12x^3+27x^2\)
Để PT nghiệm đúng với mọi x thì
\(\left\{{}\begin{matrix}3a=3\\-3abc=-12\\-3c=27\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}a=1\\b=-\dfrac{9}{4}\\c=-9\end{matrix}\right.\)
\(3x^2.\left(ax^2-2bx-3c\right)=3x^4-12x^3+27x^2\)
\(\Leftrightarrow3ax^4-6bx^3-9cx^2=3x^4-12x^3+27x^2\)
\(\Leftrightarrow\hept{\begin{cases}3a=3\\-6b=-12\\-9c=27\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=-3\end{cases}}}\)
Vậy a=1;b=2;c=-3