K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=a+b+\frac{1}{2a}+\frac{2}{b}\)

\(=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{2}{b}+\frac{b}{2}\right)-\frac{a+b}{2}\)

\(=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{2}{b}+\frac{b}{2}\right)-\frac{3}{2}\)

AD bất đẳng thức cố si cho 2 số ta đc:

\(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{2}{b}+\frac{b}{2}\right)-\frac{3}{2}\ge2.\sqrt{\frac{1}{2a}.\frac{a}{2}}+2.\sqrt{\frac{2}{b}.\frac{b}{2}}-\frac{3}{2}\)

\(P\ge2.\sqrt{\frac{1}{4}}+2.\sqrt{1}-\frac{3}{2}=2.\frac{1}{2}+2.1-\frac{3}{2}=\frac{3}{2}\)

VẬY minP=\(\frac{3}{2}\)

12 tháng 11 2018

\(A\ge\frac{\left(1+1\right)^2}{2a+b+a+2b}=\frac{4}{3\left(a+b\right)}=\frac{4}{3.16}=\frac{1}{12}\) ( Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=8\)

5 tháng 4 2018

Trả lời đi mn

8 tháng 8 2015

Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)

Với a, b > 0, ta có: 

\(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\)

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.

Phân phối số hạng hợp lí để áp dụng Côsi

\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(\ge6\)

Dấu "=" xảy ra khi a = b = 1/2.

\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)

\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)

\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân

24 tháng 3 2017

Dự đoán khi \(a=b=c=\frac{1}{3}\) khi đó \(P=\frac{19}{27}\) (gọi P=biểu thức đầu bài)

Ta đi chứng minh nó là GTNN của P

\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\left(a^2+b^2+c^2\right)+4abc\ge\frac{19}{27}\left(a+b+c\right)^3\)

Khai triển và rút gọn, ta được BĐT tương đương là:

\(8\left(a^3+b^3+c^3\right)+24\left(a^2b+b^2c+c^2a\right)-30\left(ab^2+bc^2+ca^2\right)-6abc\ge0\)

\(\Leftrightarrow8\left(a+b+c\right)^3\ge54\left(ab^2+bc^2+ca^2+abc\right)\)

\(\Leftrightarrow ab^2+bc^2+ca^2+abc\le\frac{4}{27}\left(a+b+c\right)^3\)

BĐT trên đúng. Nên \(P_{Min}=\frac{19}{27}\Leftrightarrow a=b=c=\frac{1}{3}\)
 

24 tháng 3 2017

KHO QUA DI

7 tháng 4 2020

Ta có: \(S^2=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+2\frac{a\sqrt{b}}{\sqrt{c}}+2\frac{b\sqrt{c}}{\sqrt{a}}+2\frac{c\sqrt{a}}{\sqrt{b}}\)

Áp dụng BĐT Cosi cho 3 số dương ta được

\(\hept{\begin{cases}\frac{a^2}{b}+\frac{a\sqrt{b}}{\sqrt{c}}+\frac{a\sqrt{b}}{\sqrt{c}}+c\ge4a\left(1\right)\\\frac{b^2}{c}+\frac{b\sqrt{c}}{\sqrt{a}}+\frac{b\sqrt{c}}{a}+a\ge4b\left(2\right)\\\frac{c^2}{a}+\frac{c\sqrt{a}}{\sqrt{b}}+\frac{c\sqrt{a}}{\sqrt{b}}+b\ge4c\left(3\right)\end{cases}}\)

Cộng theo từng vế của (1) (2) (3) 

=> \(S^2\ge3\left(a+b+c\right)\ge9\Rightarrow A\ge3\)

=> MinS=3 đạt được khi a=b=c=1