cho a,b>- vả \(a+b\ge3\)
tìm Min P=a+b+1/2a+2/b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\ge\frac{\left(1+1\right)^2}{2a+b+a+2b}=\frac{4}{3\left(a+b\right)}=\frac{4}{3.16}=\frac{1}{12}\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=8\)
Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)
Với a, b > 0, ta có:
\(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\)
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.
Phân phối số hạng hợp lí để áp dụng Côsi
\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)
\(\ge6\)
Dấu "=" xảy ra khi a = b = 1/2.
\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)
\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)
\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)
Dự đoán khi \(a=b=c=\frac{1}{3}\) khi đó \(P=\frac{19}{27}\) (gọi P=biểu thức đầu bài)
Ta đi chứng minh nó là GTNN của P
\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\left(a^2+b^2+c^2\right)+4abc\ge\frac{19}{27}\left(a+b+c\right)^3\)
Khai triển và rút gọn, ta được BĐT tương đương là:
\(8\left(a^3+b^3+c^3\right)+24\left(a^2b+b^2c+c^2a\right)-30\left(ab^2+bc^2+ca^2\right)-6abc\ge0\)
\(\Leftrightarrow8\left(a+b+c\right)^3\ge54\left(ab^2+bc^2+ca^2+abc\right)\)
\(\Leftrightarrow ab^2+bc^2+ca^2+abc\le\frac{4}{27}\left(a+b+c\right)^3\)
BĐT trên đúng. Nên \(P_{Min}=\frac{19}{27}\Leftrightarrow a=b=c=\frac{1}{3}\)
Ta có: \(S^2=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+2\frac{a\sqrt{b}}{\sqrt{c}}+2\frac{b\sqrt{c}}{\sqrt{a}}+2\frac{c\sqrt{a}}{\sqrt{b}}\)
Áp dụng BĐT Cosi cho 3 số dương ta được
\(\hept{\begin{cases}\frac{a^2}{b}+\frac{a\sqrt{b}}{\sqrt{c}}+\frac{a\sqrt{b}}{\sqrt{c}}+c\ge4a\left(1\right)\\\frac{b^2}{c}+\frac{b\sqrt{c}}{\sqrt{a}}+\frac{b\sqrt{c}}{a}+a\ge4b\left(2\right)\\\frac{c^2}{a}+\frac{c\sqrt{a}}{\sqrt{b}}+\frac{c\sqrt{a}}{\sqrt{b}}+b\ge4c\left(3\right)\end{cases}}\)
Cộng theo từng vế của (1) (2) (3)
=> \(S^2\ge3\left(a+b+c\right)\ge9\Rightarrow A\ge3\)
=> MinS=3 đạt được khi a=b=c=1
\(P=a+b+\frac{1}{2a}+\frac{2}{b}\)
\(=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{2}{b}+\frac{b}{2}\right)-\frac{a+b}{2}\)
\(=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{2}{b}+\frac{b}{2}\right)-\frac{3}{2}\)
AD bất đẳng thức cố si cho 2 số ta đc:
\(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{2}{b}+\frac{b}{2}\right)-\frac{3}{2}\ge2.\sqrt{\frac{1}{2a}.\frac{a}{2}}+2.\sqrt{\frac{2}{b}.\frac{b}{2}}-\frac{3}{2}\)
\(P\ge2.\sqrt{\frac{1}{4}}+2.\sqrt{1}-\frac{3}{2}=2.\frac{1}{2}+2.1-\frac{3}{2}=\frac{3}{2}\)
VẬY minP=\(\frac{3}{2}\)