K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2016

\(\Leftrightarrow\frac{x^2}{\sqrt{16-x^2}}=16-x^2\Leftrightarrow x^2=\sqrt{\left(16-x^2\right)^3}\)

Đặt \(t=\sqrt{16-x^2};\text{ }0\le t\le4\Rightarrow x^2=16-t^2\)

\(\Rightarrow16-t^2=t^3\Leftrightarrow t^3+t^2-16=0\)

\(\Leftrightarrow t=\frac{1}{3}\left(-1+\sqrt[3]{215-12\sqrt{321}}+\sqrt[3]{215+12\sqrt{321}}\right)\)

2 tháng 6 2017

ĐK \(16-x^2>0\Leftrightarrow\left(4-x\right)\left(4+x\right)\Leftrightarrow-4< x< 4\)

Đặt \(t=\sqrt{16-x^2}\Rightarrow t^2=16-x^2\)phương trình trở thành: 

\(\frac{x^3}{t}-t^2=0\Leftrightarrow x^3-t^3=0\Leftrightarrow x=t\)

\(\Leftrightarrow x=\sqrt{16-x^2}\Leftrightarrow\hept{\begin{cases}x>0\\x^2=16-x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x^2=8\end{cases}\Leftrightarrow}}x=2\sqrt{2}\)TMDK

31 tháng 10 2021

ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x=-4\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\left(x-4\right)\left(x+4\right)}=3\sqrt{\left(x+4\right)}\\ \Leftrightarrow\left(x-4\right)\left(x+4\right)=9\left(x+4\right)\\ \Leftrightarrow\left(x+4\right)\left(x-13\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\left(tm\right)\\x=13\left(tm\right)\end{matrix}\right.\)

31 tháng 10 2021

ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x=-4\end{matrix}\right.\)

\(pt\Leftrightarrow\sqrt{\left(x-4\right)\left(x+4\right)}-3\sqrt{x+4}=0\)

\(\Leftrightarrow\sqrt{x+4}.\left(\sqrt{x-4}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+4}=0\\\sqrt{x-4}=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-4=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\left(tm\right)\\x=13\left(tm\right)\end{matrix}\right.\)

a: =>\(x\cdot\left(\sqrt{3}-1\right)=16\)

=>\(x=\dfrac{16}{\sqrt{3}-1}=8\left(\sqrt{3}+1\right)\)

b: =>(x-căn 15)^2=0

=>x-căn 15=0

=>x=căn 15

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

15 tháng 1 2021

BĐT cần chứng minh tương đương:

\(\left(\sqrt{x^2+16}-5\right)-\left(\sqrt{x^2+7}-4\right)=x-3\)

\(\Leftrightarrow\dfrac{x^2-9}{\sqrt{x^2+16}+5}-\dfrac{x^2-9}{\sqrt{x^2+7}+4}=x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\\left(x+3\right)\left(\dfrac{1}{\sqrt{x^2+16}+5}-\dfrac{1}{\sqrt{x^2+7}+4}\right)=1\left(1\right)\end{matrix}\right.\).

Mặt khác từ pt ban đầu suy ra x - 2 > 0, do đó x > 2.

Do đó vế trái của (1) bé hơn 0.

Suy ra 91) vô nghiệm.

Vậy nghiệm của pt đã cho là x = 3.

 

15 tháng 1 2021

Cách khác: Từ pt đã cho ta thấy x > 2.

PT \(\Leftrightarrow\dfrac{9}{\sqrt{x^2+16}+\sqrt{x^2+7}}=x-2\).

Với x > 3 thì VT < 1; VP > 1.

Với x < 3 thì VT > 1; VP < 1.

Với x = 3 ta thấy thoả mãn.

Vậy nghiệm của pt đã cho là x = 3.

16 tháng 9 2021

a) \(3x-2\sqrt{x-1}=4\) (ĐK: x ≥ 1)

\(\Rightarrow3x-2\sqrt{x-1}-4=0\)

\(\Rightarrow3x-6-2\sqrt{x-1}+2=0\)

\(\Rightarrow3\left(x-2\right)-2\left(\sqrt{x-1}-1\right)=0\)

\(\Rightarrow3\left(x-2\right)-2.\dfrac{x-2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow\left(x-2\right)\left[3-\dfrac{2}{\sqrt{x-1}+1}\right]=0\)

*TH1: x = 2 (t/m)

*TH2: \(3-\dfrac{2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow3=\dfrac{2}{\sqrt{x-1}+1}\)

\(\Rightarrow3\sqrt{x-1}+3=2\)

\(\Rightarrow3\sqrt{x-1}=-1\) (vô lí)

Vậy S = {2}

b) \(\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\) (ĐK: \(-\dfrac{1}{4}\le x\le3\) )

\(\Rightarrow\sqrt{4x+1}-3-\sqrt{x+2}+2-\sqrt{3-x}+1=0\)

\(\Rightarrow\dfrac{4x-8}{\sqrt{4x+1}+3}-\dfrac{x-2}{\sqrt{x+2}+2}+\dfrac{x-2}{\sqrt{3-x}+1}=0\)

\(\Rightarrow\left(x-2\right)\left(\dfrac{4}{\sqrt{4x+1}+3}-\dfrac{1}{\sqrt{x+2}+2}+\dfrac{1}{\sqrt{3-x}+1}\right)=0\)

=> x = 2

 

 

 

16 tháng 9 2021

\(a,3x-2\sqrt{x-1}=4\left(x\ge1\right)\\ \Leftrightarrow-2\sqrt{x-1}=4-3x\\ \Leftrightarrow4\left(x-1\right)=16-24x+9x^2\\ \Leftrightarrow9x^2-28x+20=0\\ \Leftrightarrow\left(x-2\right)\left(9x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=\dfrac{10}{9}\left(tm\right)\end{matrix}\right.\)

\(b,\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\left(-\dfrac{1}{4}\le x\le3\right)\\ \Leftrightarrow4x+1+x+2-2\sqrt{\left(4x+1\right)\left(x+2\right)}=3-x\\ \Leftrightarrow-2\sqrt{\left(4x+1\right)\left(x+2\right)}=2-6x\\ \Leftrightarrow\sqrt{4x^2+9x+2}=3x-1\\ \Leftrightarrow4x^2+9x+2=9x^2-6x+1\\ \Leftrightarrow5x^2-15x-1=0\\ \Leftrightarrow\Delta=225+20=245\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15-\sqrt{245}}{10}=\dfrac{15-7\sqrt{5}}{10}\left(ktm\right)\\x=\dfrac{15+\sqrt{245}}{10}=\dfrac{15+7\sqrt{5}}{10}\left(tm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{15+7\sqrt{5}}{10}\)