K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2022

Giờ anh đang bận hồi nữa anh giúp cho nha

27 tháng 2 2022

nhanh nha ah, e cần gấp lắm

\(F=\dfrac{1}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{100\cdot103}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{102}{103}=\dfrac{34}{103}\)

2 tháng 10 2021

bài toán lớp mấy vậy?

2 tháng 10 2021

\(A=\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{100\times103}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+...+\dfrac{3}{100\times103}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{103}\right)=\dfrac{1}{3}.\dfrac{102}{103}=\dfrac{34}{103}\)

1 tháng 11 2018

a/ \(\dfrac{3}{11.12}+\dfrac{3}{12.13}+\dfrac{3}{13.14}+\dfrac{3}{14.15}\)

\(=3\left(\dfrac{1}{11.12}+\dfrac{1}{12.13}+\dfrac{1}{13.14}+\dfrac{1}{14.15}\right)\)

\(=3\left(\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\right)\)

\(=3\left(\dfrac{1}{11}-\dfrac{1}{15}\right)\)

\(=\dfrac{4}{55}\)

b/ \(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}\)

\(=2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)

\(=\dfrac{2}{3}\)

c/ \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+.....+\dfrac{3}{97.100}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+....+\dfrac{1}{97}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

d/ \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+.....+\dfrac{3}{100.103}\)

\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+....+\dfrac{1}{100}-\dfrac{1}{103}\)

\(=\dfrac{1}{2}-\dfrac{1}{103}\)

\(=\dfrac{101}{206}\)

e/ Đặt :

\(A=\dfrac{1}{1.5}+\dfrac{1}{5.10}+....+\dfrac{1}{95.100}\)

\(\Leftrightarrow5A=\dfrac{5}{1.5}+\dfrac{5}{5.10}+....+\dfrac{5}{95.100}\)

\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+....+\dfrac{1}{95}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

\(\Leftrightarrow A=\dfrac{99}{100}:5=\dfrac{99}{500}\)

Dấu . là dấu nhân nhé <3

1 tháng 11 2018

Cảm ơn ạyeu

3 tháng 5 2018

\(S=\frac{1}{1\times4}+\frac{1}{4\times7}+\frac{1}{7\times10}+...+\frac{1}{94\times97}+\frac{1}{97\times100}\)

\(S=\frac{1}{3}\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}\times\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}\times\frac{99}{100}\)

\(S=\frac{33}{100}\)

30 tháng 5 2019

1/1*4 + 1/4*7 + 1/7*10 + ... + 1/97*100

= 1/3(3/1*4 + 3/4*7 + 3/7*10 + ... + 3/97*100)

= 1/3(1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100)

= 1/3(1 - 1/100)

= 1/3*99/100

= 33/100

trả lời 

=33/100

chúc bn

học tốt

6 tháng 6 2019

\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)

\(=\frac{11}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(=\frac{11}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=\frac{11}{3}\left(1-\frac{1}{103}\right)\)

Tự tính

6 tháng 6 2019

\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)

\(\frac{11}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(\frac{11}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(\frac{11}{3}.\left(1-\frac{1}{103}\right)\)

\(\frac{11}{3}.\frac{102}{103}\)

\(\frac{374}{103}\)

\(A=\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+...+\dfrac{3}{100\cdot103}\)

\(=\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(=\dfrac{98}{515}\)

14 tháng 8 2018

S=1/1-1/4+1/4+1/7-1/7+1/10+...+1/100-1/103

S=1/1-1/103

S=102/103

Vì 102/103<1 nên S<1

14 tháng 8 2018

\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{100\cdot103}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\)

\(S=1-\frac{1}{103}\)

\(S=\frac{102}{103}< 1\)